CSE 373 Design and Analysis of Algorithms

Mirza Mohammad Lutfe Elahi

Department of Electrical and Computer Engineering
North South University

Sorting - Quicksort
Chapter 07
Description of Quick Sort

Quicksort, like merge sort, applies the divide-and-conquer paradigm.

- **Divide**: Partition (rearrange) the array $A[p..r]$ into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that each element of $A[p..q-1]$ is less than or equal to $A[q]$, which is, in turn, less than or equal to each element of $A[q+1..r]$. Compute the index q as part of this partitioning procedure.

- **Conquer**: Sort the two subarrays $A[p..q-1]$ and $A[q+1..r]$ by recursive calls to quicksort.

- **Combine**: Because the subarrays are already sorted, no work is needed to combine them: the entire array $A[p..r]$ is now sorted.
Algorithm - Quick Sort

\textbf{QuickSort}(A, p, r)

1. \textbf{if} \ p \ < \ r
2. \hspace{1em} q = \text{Partition}(A, p, r)
3. \hspace{1em} \text{QuickSort}(A, p, q - 1)
4. \hspace{1em} \text{QuickSort}(A, q + 1, r)
Algorithm - Partitioning

\textbf{Partition}(\textit{A, p, r})

1. \(x = A[r] \)
2. \(i = p - 1 \)
3. \textbf{for} \(j = p \) \textbf{to} \(r - 1 \)
4. \textbf{if} \(A[j] \leq x \)
5. \hspace{1em} \(i = i + 1 \)
6. \hspace{1em} \text{exchange} \ A[i] \text{ with} \ A[j] \)
7. \text{exchange} \ A[i + 1] \text{ with} \ A[r] \)
8. \textbf{return} \(i + 1 \)

At the beginning of each iteration of the loop of lines 3 – 6, for any array index \(k \),

1. If \(p \leq k \leq i \), then \(A[k] \leq x \).
2. If \(i + 1 \leq k \leq j - 1 \), then \(A[k] > x \).
3. If \(k = r \), then \(A[k] = x \).
The operation of PARTITION

Figure: Array entry $A[r]$ becomes the pivot element x. Lightly shaded array elements are all in the first partition with values no greater than x. Heavily shaded elements are in the second partition with values greater than x. The unshaded elements have not yet been put in one of the first two partitions, and the final white element is the pivot x.
The operation of PARTITION

Figure: The four regions maintained by the procedure PARTITION on a subarray $A[p..r]$. The values in $A[p..i]$ are all less than or equal to x, the values in $A[i+1..j-1]$ are all greater than x, and $A[r] = x$. The subarray $A[j..r-1]$ can take on any values.
Performance of Quick Sort

- The running time of quicksort depends on whether the partitioning is balanced or unbalanced.
- It depends on which elements are used for partitioning.
- For balanced partition, the algorithm runs asymptotically as fast as merge sort.
- For unbalanced partition, however, it can run asymptotically as slowly as insertion sort.
Worst-case Partitioning

- The partitioning routine produces one subproblem with \(n - 1 \) elements and one with 0 elements.
- Assume that this unbalanced partitioning arises in each recursive call.
- The partitioning costs \(\Theta(n) \) time.
- The recursive call on an array of size 0 just returns, \(T(0) = \Theta(1) \)
- The recurrence for running time:

\[
T(n) = T(n - 1) + T(0) + \Theta(n) \\
= T(n - 1) + \Theta(n)
\]
If we sum the costs incurred at each level of the recursion, we get an arithmetic series, which evaluates to $\Theta(n^2)$.

The worst-case running time of quicksort is no better than that of insertion sort.

Moreover, the $\Theta(n^2)$ running time occurs when the input array is already completely sorted.
Best-case Partitioning

- In the most even possible split, \textsc{Partition} produces two subproblems.
- Each of size no more than $n/2$, since one is of size $\lceil n/2 \rceil$ and one of size $\lfloor n/2 \rfloor - 1$.
- Quick sort runs much faster.
- The recurrence for running time:

$$T(n) = 2T(n/2) + \Theta(n)$$

$$= \Theta(n \log n)$$

- By equally balancing the two sides of the partition at every level of the recursion, we get an asymptotically faster algorithm.
The average-case running time of quicksort is much closer to the best case than to the worst case.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1 proportional split.

Then the recurrence for running time:

\[T(n) = T(9n/10) + T(n/10) + cn \]
Balanced Partitioning

Every level of the tree has cost \(cn \), until the recursion reaches a boundary condition at depth \(\log_{10} n = \Theta(lgn) \), and then the levels have cost at most \(cn \).

The recursion terminates at depth \(\log_{10/9} n = \Theta(lgn) \)

The total cost of quicksort is therefore \(O(n \log n) \)
In the average case, \textsc{Partition} produces a mix of "good" and "bad" splits.

Suppose, for the sake of intuition, that the good and bad splits alternate levels in the tree, and that the good splits are best-case splits and the bad splits are worst-case splits.
Average-case Partitioning

- Let's assume that the boundary-condition cost is 1 for the subarray of size 0.
- The combination of the bad split followed by the good split produces three subarrays of sizes 0, \((n - 1)/2 - 1\), and \((n - 1)/2\) at a combined partitioning cost of \(\Theta(n) + \Theta(n - 1) = \Theta(n)\).
- This situation is no worse than the other that is a single partitioning that produces two subarrays of size \((n - 1)/2\), at a cost of \(\Theta(n)\).
- Intuitively, the \(\Theta(n - 1)\) cost of the bad split can be absorbed into the \(\Theta(n)\) cost of the good split, and the resulting split is good.
- The running time of quicksort, when levels alternate between good and bad splits, is like the running time for good splits alone: still \(O(n \log n)\).