SETS, FUNCTIONS

Md. Shahriar Karim

Question 1: Draw the Venn Digrams for the following combincations of the sets X, Y and Z:

(a) $X \cap (Y \cap Z)$

(c) $(X \cap Y) \cup (Y \cap Z)$

(b) $X \cap (Y - Z)$

(d) (X - Y - Z)

Question 2: Use set builder notations to prove that: $a(X) \oplus Y = (X \cup Y) - (X \cap Y)$, $b(Y - X) \cup (Z - X) = (Y \cup Z) - X$. Here, \oplus means the *exclusive OR*, which is also known as *symmetric difference*.

Question 3: Given $f: \mathbb{Z} \to \mathbb{Z}$, and f is defined as f(x) = 6x. Identify the domain and co-domain. Is it one-to-one, Onto function, or both? Explain with examples.

Question 4: Provide an example of: i) One-to-one but not Onto function, ii) Onto but not One-to-one function, iii) Both One-to-one and Onto function. Explain how the proposed functions satisfy their relevant criteria.

Question 5: Given $f(x) = x^2 + 1$ and g(x) = x + 2, evaluate $f \circ g(x)$ and $g \circ f(x)$. Comment if $f \circ g(x)$ and $g \circ f(x)$ are equal for the given f(x) and g(x).

Question 6: Given f(x) = (x+4)/(2x-5), find the inverse function $f^{-1}(x)$.

Question 7: Assume that H(m) = 3m - 2 is a function and its inverse exists. Calculate the inverse function $H^{-1}(m)$. Show that $HoH^{-1}(m) = m$.