DUE ON OCT 16, 2018

North South University

Problem 1: Find the Taylor's series of f(x) = 1/x at x = 2. Show all the steps as needed.

Problem 2: Expand $f(x) = (\ln(1+x) - x)/x^2$ at x = 0 using Taylor's series expansion method. (Hint: Find the Taylor's expansion of $\ln(1+x)$ and then do rearrangements using algebraic manupulation)

Problem 3: Expand $f(x) = e^x$ at x = 0. Take upto 3^{rd} , 5^{th} and 7^{th} term in the Taylor's expansion of e^x and show the comparison with $f(x) = e^x$.

Problem 4: Find the equation of the tangent line to $\frac{x^2}{16} + \frac{y^2}{4} = 1$ at a point $(2, -\sqrt{2})$

Problem 5: Find the Taylor's expansion of $g(x) = \int_0^x \cos(m) dm$.

Problem 6: Find the limit of the below sequence:

$$\left(\sqrt{n^2+1}\right)/(2n+1)$$
 as $n \to \infty$

Problem 7: Find the limit, and the rate of convergence, of $\lim_{x\to 0} f(x) = (e^x - 1)/x$.

Problem 8: Find the limit, and the rate of convergence, of $\lim_{x\to 0} f(x) = \sin x/x$.

Problem 9: Write a note (1 page limit) on Fixed Point and Floating Point number representation system with examples of your own.

Problem 10: Convert the number $(1234.125)_{10}$ to $(...)_2$