' ’ 64 Discrete Mathemuﬂcs &Its Applications

, :
t \JU Resolutlon 'Prlnclple .’ As another way of provmg that en argument is correct, we use the resolution
prmcxple This idea is used in the Togic programmmg language Prolcg
'i A variable or négation of a variable is cailed a literal.
l A disjunction of literals is called a sum and a conjunction of literals is called a product A clause is a a dis- V</ .
junction-of literals, i.e., it is a sum. : Th
i For any two clauses.C, and C), if there is a literal L. in Cythat is complementary to a literal L, in C,, then - ¢
i delete L, and L, from C, and C, respectlvely and construct the disjunction of the remammg clauses The con- _ an
: structed clause is a resolvent of C, and C,. - ' - : .
. EXamplede: Supposeyouhave | o - o I IR
Ch C,=PvQvR -~ | S S o : i ‘”‘
f i C,==Pv-SvT | ' - ' : '
b Then P and — P are complementary to each other. The resolvent of C, and C,'is obtamed by deletmg P .
1 and — P from C, and C, respectively, and finding the disjunction of the remammg fiterals; In this' case it is RO Ir
t

QVRVﬁSVT . _ _ o _ : «

Gwen two clauses C and C,, a resofvent Cof C, and C isa log;cal consequence of C, and C,.
For example, cons1der the rules modus ponens and modus tollens
Modus ponens rule is P A (P — 0= ¢
- Putting in clause form this amounts to : S
Y S N L . -
' C ﬂPvQ ' - ‘

|

l\ The resolvent of C, and C2 is 0 which is the loglcal ccusequence of C’ and 02 ST o Y ‘X/

i Similatly modus tollens rule i is (P— Q) A Q =P ‘ L ' , L L
1 Puiting in clause form ‘ ‘ T o S o
i CiimPv@ e ' : s ' '

il C - ‘

t ’ The resolvent of C and C2 is - P whmh is the loglcal consequence O aud C
i Proof : -

Consider two clauses C, and C..
C, contains L and G, contam - L

l \ Writing CyasLv €] . . - ST ' o '7 B _' s , (N
A5 and Cyas ~ L v C, ' A ' S

- resolvent of C,and C, is C Cl v C

.+ Now we want to show C is the logical consequence of C, and C .. In essence, we want to show that if C,
and C, are true, C is true. ‘ S
‘Assume C, and C, are true. -
l . Now there are-two p0551b1ht1es
Either L is true or-L.is false.

If L is true, — L is false and i in order that C, IS true C 1s true
Heuce C= C v C is'true,

ition

dis-

then

on-

ig P
it is

" The Foundations: Loglc and Proofs &5

. If L is false, in order that C‘ is true C is true

Herice € = C v C, istrue,
So whenever C, and C, are true C ig true
Hence Cis the Iogncal consequence of C, and C'

\)(/ The resalutton princtpte ‘Given a set S of clauses, a (resolutlon) deductlon of C from S is a finie sequence
C,, Cz, . C of clauses such that each C; either lsa clause in S or a resolvent of cIauses precedmg c’
and C, = C‘ A deduction of [] (empty clause) is called a refutatlon ora proof of §.

- Ifyou have afn argument Where Pl, Py, ..., P are the premises and C'is the conclusio
resolution prmctple putP, .., P in clause form and add to it —
can be denved, the argument is vahd

: ﬁ?or example, °°“"—"1df-‘r modus pohens P

.\""-‘*_Lh__

n, to get d proof usmg
Cin clause form. From this sequence, if []
e TR L

Ini the clause form C, -
C, = - P v Q 1 Q c = Q
tion of the conc usmn ie., 3 =
E“ake aé' C;f!;;ll 2 nl;%?';so:lutlon you can get O and from this and C, by resolunoni]is arrlved at
rom -
L ‘CQ. P \‘ Q

from C, and C, by resolution * C,. . @
- from C:I and C, by resolutlon G 0 :
‘ We show that the followmg argurnent is correct. .

Conyertmg to logtcal notatlon _;
LetT denote ‘Today is Tuesday
M denote ‘I have 4 test in Mathemattcs

Et denote ‘I have a test in Economlcs
"8 denote ‘My Econormics Professor is sick”
So the premlses are. T (Mv E)
S Y
TAS
’ - - 3 " - : B . ' EL . E B .
_Putting is clause form C,: =TV M.V .
 Putting is clause fo VS
C,: T
G,

. . S .
luswn) '
C,im M (nega‘uon of cone
Now we have to check whether itig possible fo denve l:] from C,, Cl, C,, G, C .
FromC andC' ‘ Cy: —|Tva--..S"
fromC andC G ‘Mv—'S

" 66 Discrete Mathematics & Its Applications

from C,and C, Co: M
fromC;and G- Gy
Hence the argument is correct. ' ‘ o «-

!
| ! ' \1(/ Logic Programming - An important type of programming language is designed to reason using the rules of i :
. { predicate logic. Prolog {from Programming in Logic), developed in the 1970s by computer scientists working in : o
41 the area of artificial intelligenc, is an example of such a language. Prolog programs include a set of declarations ;
' ,/' consisting of two types of statements, Prolog facts and Prolog rules. Prolog facts define predi-
Links @'5 cates by specifying the elements that satisfy these predicates. Prolog rules are used to-define new
S . predicates using those already defined by Prolog facts. Example 28 illustrates these notions.

co Example’12" Consider a Prolog program given facts telling it the instructor of each class and in which

- classes students are enrolied. The program uses these facts to answer queries concerning the professors who

i teach particular students. Such a program could use the predicates instructor(p, c) and enrolled(s, c) to rep-

; resent that professor p is the instructor of course ¢ and tha\student s is enrolled in course ¢, respectively. For
example, the Prolog facts in such a program might include! R

in'_structor(chan,math273)
instructor (patel,ee2ll)

i - instructor (grossman,cs301)
! . enrolled{kevin,math273)

- ' 'enrolled(juana,ee222)

1 enrolled (juana, cs3gl)

{‘ enrolled (kiko, mathi273} -
!

enrolled{kiko,cs301)

B (Lowercase letters have been used for entries because Prolog considers names beg_inn_ing'with_an upper—
;FE . case letter to be variables.) T ‘ I o ; ‘

\ A new predicate teaches(p, s), representing that professor p teaches student s, can be defined Using the

[i Prolog rule ‘
I teachés {p,s) :- instructor(p,c) . enrol-léd(s,c)))) .
\1\ ~ which means that teaches(p, s) is true if there exists a class ¢ such that professor p is the instructor of class '
| cand student 5 is enrolled in class c. (Note that a comma is used to represent a conjunction of predicates in - A
l Prolog. Simitarly, a semicolon is used to represent a disjunction of predicaies.)’ L c
l{ Prolog answers queries using the facts and rules it is given. For example, using the facts and rules listed,” ¢
v the query _ . - : : .C
%; 7enrolled (kevin, math273) ‘
: 1 - produces the response
?' ’ '}Ies ’] o ' ‘ _ . y
1 " because the fact enrolled(kevin, math273) was provided as input. The query o '
! Il 7enrolled (X, math273) ° — ' ' ' a
:‘ } produces the response
k kevin :
| : kiko s

. , ‘ : i
11t To produce this resp onsé, Prolog determines all possible values of X for which enrolled(X, math273) has beer

D included as a Prolog fact. Similarly, to find all the professors who are ihstructors in classes being taken b g
Juana, we use the query ' IR ’ ‘ . : , ' s
?teaches (X, juana) . ' '

B e T AT T Ao e SR

Wi

The Foundations: Logic and Proofs 67

-This query returns
patel) .
grossman ‘ -

Now we shall c01151der the connection between resolution principle and Prolog.

A Horn clause is a clause with at most one non-negated literal, If all literals are negated, it is called a
headless Horn clause. If one literal is non-nogated, it is called aw

Consider the following rule:

Aunt (x, y) :— Female (x), Sister (x, z), Parent (z,) = - ’ Rule (1).

This means if x is a Female and x is the Sisterof zand z is a Parent of ¥, then x lS the Aunt of y.
Suppose we want to conclude Sita is the Aunt of Mohlan
We have the following facts

Female (Sita) - - —F v
Sister (Sita, Geetha) - F2 “
' Parent (Geetha, Mohan) — F, *

Instantiating the rule (1} we get - ‘

Aunt (Sita, Mohan) — Female (Slta) S1ster (Sita, Geetha), Parent (Geetha Mohan)

Each F|, F,, F, is a headed Hom clause. ' _

Rule (1)-can be written in logical notation as

VxVyVz [(Female (x) A Sister (x, z) A Parent (z,) - Aunt s y)]

Using instantiation we get

(Female (Sita) A Sister (Sita, Geetha) A Parent (Geetha Mohan)) — Aunt (Slta Mohan)

* Expressing as a clause this becomes :
— (Female (Slta) A Sister (Sita, Geetha) A Parent (Géetha, Mohan)) \% Aunt (Sita, Mohan)

Using DeMorgan’s laws we get

— Female (Slta) Vo= S1ster {Sita, Geetha) Vs - Parent (Geetha Mohan)) v Aunt (Sita, Mohan) — IR
(Instantiation of rule 1)

The: ¢onclusion we want to derive is Aunt (Sita, Mohan)

Negatmg the conclusion we get

- = Aunt (Sitd, Mohan) S ‘ | - NC (negation of conclusmn) '

: From F , Fy, F,, IR and NC, it can be seen that using resplutmn we can derive.the empty clause, Hence

he lus;on Aunt (Slta Mohar) is correct. Note that in a rule in Prolog what.occurs on the left hand side.
‘of 1 i the headed portion and what occurs in the right hand portion is the headless Mlon Hence a rule | !

corresponds to a Horn clause. A fact consists of a single nbfi-negated literal and hence a Horn clause. The

. conclusion derived is:— Aunt (Sita, Mohan) and for resolution we take the negation of the right hand side of
' :—. This is a headless Hom clause. - '

The questlon asked is ? Aunt (Sita, Mohan) and Prolog replies yes, ‘

The goal is Aunt (Sita, Mohan) and Prolog tries to find rules-and facts and using proper mstantlatlon tries
to see whether the goal is satisfied. This is called backward chainjng.
. Thus we see that the resolution principle is used in the logic programming language Prolog. It is also used in
automatic theorem provmg where a program or software package i is used to prove theorems, gzven the ; axwms

Fallacles Sew:ral common fallacies arise in incorrect arguments. Thesc fallacies resemble rules of
xnference but are based on contingencies rather than tautologies. These are d1scussed here to show the dlstmc- :

¥,

. tion between correct and incorrect reasoning.
L'_'ms%E The proposition [{ P > q)-A g] = p is not a tautology, because it is false when p is false arid

g is true. However there are many incorrect arguments that tleat this as a iautology In other

.":->_m

ﬁ : 68 Dlscrete Mathematics & its Applications - 'r'
B L
A i . . i
| words, they treat the argument with premises p — ¢ and g'and conclusion p as a valid argument form, which
l E it is not. This type of incorrect reasoning is-called the fallacy of affirming the conclusion. = R & ' We sul
| Exarnple13 Is the following argument valid? ‘ . - fmj quant;
. Ifyou do every problém in this book, then you will learn discrele mathematics. You learned discrete 8 LEy ampl
mathematics o - . | computer
Therefore, you did every problem in this book. - . - in compu
Solution Letp be the proposition “You did every problem in this book.” Let g be the proposition “You learned e :
discrete mathémiatics.” Then this argument is of the.form: if p — g aad g, then p, This is an example of an
incorrect argurnent using the fallacy of affirming thie conclusion. Indeed, it is possible for you to leamn discrete
mathematics in some way other than by doing every problem in this book. (You may learn discrete mathematics
by reading, listening to lectures, doing some, but not all, the problems in this book, and so on.) ' -«
The proposition [(p —> g) A — p] = —q is not a tautology, because it is false when p-is false and ¢ is true.
,;; Maiy incorrect arguments use this incorrectly as a rule of infererice. This type of incorrect reasoning is called
. the fallacy of denying the hypothesis. ' .
L | E)‘c:—imple14 Let p and g be as in Example 10. If the onditional siatement p — g is frue, and —p is true,
R is it correct to conclude that —q is true? In other words, is it correct to assume that you did hot learn discrete _
. - mathematics if you did not do every problem in the book, assuming that if you do every problem in this book, ;
' f‘ _ o ‘then you will learn discrete marhg@arics? Co ‘ ' | . i 'Isblufior
1o Solution It is possible that you learned c]iscréte mathematics even if you did not do every problem in this »;";,
: X ~ book. This incorrect argument is of the form p — ¢ and ~p imply —g, which is an-example of the fallacy of ~f | Extr
i denying the hypothesis. ‘ I < i Example
E; Vel Y T . . L oo CoL e : L \ . Step
L . Rujesott ficefor Qu el Statements © We have discussed rules of inference for propositions. f- -y
§ . We will now describe some important rules of inference for statements involving quantifiers. These rules of & T x
b inference are used extensively in mathematical arguments, often without being explicitly mentioned. . . g 2.D(
i * -~ Universal jnstantiation is the rule of inference used to conclude that P(¢) is true, where c is a particular § - 3D
I member of the domiain, given the premise Vx P(x)- Universal instantiation is used when we conclude fromthe - e g
S statémenit “All women are wise” that “f_isa is Wise,” Where Lisd is & miétaber of the domain of all women. R o
S Universal geneéralization is the tule of inferénce that states that Vi P(x) is tTug, given the premisc that P f YEXxam
i is-true for all elements c in the domain. Universal generalization is used when we show that Vx P(x)y is true B -in this ¢
1, ¢ bytakingan arbitrary elément ¢ from the domain and showing that P(c) is trug. The element ¢ that we select . the bool
it +Aust be an arbitrary, and not a specific, element of the domain. That is, when we assert from Vi P(x) the exis- o
NEE tence of an element ¢ in the domain, we have no control over ¢ and cannot rhake aty other assumptions about Solutio!
i ‘1 ‘ ¢ other than it comes from the domain. Universal generalization is used implicitly in friany proofs in math- The prC
l f | ematics and is seldom mentioned explicitly. However, the error 6f adding unwarrdnted assumptions about the can be v
i atbitrary element ¢ when universal genetalization is used is all too common in incofrect feasoning. ' Step
411 1 Existential instantiation &s the rulé that allows us to conclude that there is an élement ¢ in the dosuain for o L3
‘ | which P(c) is true if we know that 3x P(x) is true. We-cannot select dn arbitrary value of ¢ here, but rather it 2. C
EE st be a ¢ for which P(c) is true. Usually we have 0o knowledge of what ¢ is, only that it exists. Because it t3.C
] E - exists, we may giveita name (c) and continue our argument. - . oo L E '4- Y
\ [i _ Existential generalization is the rule of inference that is 'ﬂsed to‘qonclude that 3x P(x) is true when a par- . 5.C
Al g ticular element ¢ with P(c) true is known. That is, if weknow one element ¢ in the domain for which P(c) is 6. F
‘ true, then we know that 3x P(x) is true. o e ' . o : ; ;
9.3
L —___’__________mmzm- e
...,’——f

v-hit_:h

screte

IR
iamed
of an
iscrete
matics
«
is true.
called

is true,
liscrete
5 book,
i'in this
llacy of
AN |

\sitions.
rules of

articular

fram the
Smer.
it P(¢)
¢) is true
ve select
the exis-
ms about
in math-
about the
ymain for
t tather it
Jecause it
et a pai-
¢h P(c) is

10

BT IS WA

The Foundations: Logic and Proofs 69

We summarize these rules of inference in Table 2. We will illustrate how oné of these rules of inference

for quantified statements i used in Example 15. .
: f

ik v ample15 - Show that the premises “Everyone in this discrete mathematics class has taken a course in

ify

computer-science” and “Marla is a student in this class" imply the conclusion “Marla has taken a course
in computer science.” R

Table2 Rules of inference for quantified statements,
Rule of Inference : e S N

¥x P(x)
P(c)

'P(;:) for on arbitrary ¢
- Vx P(x)

- Ax Px)
. P(c) for some element ¢

 P(c) for some element ¢ T Existﬁnti,a_l'.genar_ah,zatmn'f
S PE) . . N TR

solution Let D(x) denote “x is in this discrete mathematics class,” and let C(x) denote ‘“x has taken‘a course

in computer science.” Then the premises are ¥x(D(x) = C(x)) and D (Marla), The conclu-
. Extra sion is C (Marla). ' _ : o ' :
.. Examples The following steps can be used to establish the conclusion from the premises.
 Step . " Reason I
1. Vx(D(x) - C(x)), , . Premise - . . o/
. 2.D(Marla) — C(Marla) ~ Universal instantiation from (1)
. 3. DMarla) - Premise -, B

' 4. C(Marla) Moduis ponens from (2) and (3) . j o -

;‘,:E;xla_mple:if)‘j; Show that the premises A student in this class has not read the book, "“ and "Everyone
E" “in-this class passed the first exam”’ imply the conclusion “"Someone ‘who passed-the first exam has not read -

r

" the book. ”

‘solution Let C(x) be“y is in this class,” B(x) be “x has read the book,™and P(x) be x passed the first exam.”
The premises are Ix(C(x) A —B(x)) and Vx(C(x) = P(x)). The conclusion is Ax(P (x) A —B(x)). These steps
can be used to establish the conclusion from the premises. - 5 . B

o,

Step : : _Reason- :

1. (CF) A—B) Premise : .
2. Cla) n—B(a) " Existential instantiation from (1)

3. Ca - - - Simplification from (2)

4, ¥x(C(x) —> P(x)) - ‘Premise .

5. Cla) = P(a). " Universal instantiation from (4)

6. P(a@ © Modus ponens from (3} and (5)

7. —=B(a) , , Simplification from (2) o

8. P(a)n—B(a)- - Conjunction from (6) and (7) - J

9 .

Ix(P (x) A= B(x)) Existcutial.generalization from (8) -

