

NORTH-SOUTH UNIVERSITY

Home-Work

Topic: Grammars & Derivations

Course Code: CSE-425

Sec: 1

Submitted by: SYED MUSTAVI MAHEEN

ID# 1611207042

BNF: Backus-Naur Form

- A notation technique for Context-Free Grammar.
- Used to describe the syntax of languages used in computing.
- Have 2 sides, Left-Hand Side & Right-Hand Side
- In Left-Hand Side, there can only be Non-Terminals.
- In Right-Hand Side, there can be Non-Terminals/ Lexemes / Tokens.
- L.H.S + R.H.S = Grammar Rule

Example

Derivations

A derivation is basically a sequence of production rules, in order to get the input string. During parsing, we take two decisions for some sentential form of input:

- Deciding the non-terminal which is to be replaced.
- Deciding the production rule, by which, the non-terminal will be replaced.

Example

```
begin A = B + C; B = C end

<program> \Rightarrow begin <stmt_list> end

begin <stmt>; <stmt_list> end

begin A = <expression>; <stmt_list> end

begin A = <expression>; <stmt_list> end

begin A = <var> + <var>; <stmt_list> end

begin A = B + C; <stmt_list> end

begin A = B + C; <stmt_list> end
```

To decide which non-terminal to be replaced with production rule, we can have two options:

Left-most Derivation

If the sentential form of an input is scanned and replaced from left to right, it is called left-most derivation. The sentential form derived by the left-most derivation is called the left-sentential form.

Right-most Derivation

If we scan and replace the input with production rules, from right to left, it is known as right-most derivation. The sentential form derived from the right-most derivation is called the right-sentential form.

Sample Grammar

```
\langle \exp \rangle \rightarrow \langle \exp \rangle + \langle \exp \rangle | \langle \exp \rangle | \langle \exp \rangle | \langle \operatorname{number} \rangle

\langle \operatorname{number} \rangle \rightarrow \langle \operatorname{number} \rangle \langle \operatorname{digit} \rangle | \langle \operatorname{digit} \rangle

\langle \operatorname{digit} \rangle \rightarrow 0 | 1 | 2 | 3 | 4
```

Show 234 using Left-Most Derivation and Right-Most Derivation.

Left-Most Derivation:

Right-Most Derivation:

- \rightarrow <number> 4
- \rightarrow <number> <digit> 4
- \rightarrow <number> 34
- \rightarrow <digit> 34
- **→** 234

Practice Grammar

1.
$$\langle assgin \rangle \rightarrow \langle id \rangle = \langle expr \rangle$$

 $\langle id \rangle \rightarrow A \mid B \mid C$
 $\langle expr \rangle \rightarrow \langle id \rangle + \langle expr \rangle \mid \langle id \rangle * \langle expr \rangle \mid \langle id \rangle$

Show A = B * (A+C) using Left-Most Derivation.

Solution:

Show A = A * (B + (C * A)) using Left-Most Derivation.

Solution:

Class → <CLASS> Text </CLASS>

Text → Char Text

Text → Char

Char → a... (other chars)

Studs → Stud Studs | Stud

Stud → <STUD> TEXT </STUD>

Generate documents such as: <ROLL><CLASS>cs154</CLASSS>

<STUD>Sally</STUD>

<STUD>Fred</STUD>

</ROLL>

Try it yourself to practice.