
Computer architecture and Programming language implementation with history
A Slecture by Abu Sadat Md. Sayem, Hasib Mahmud & Md. Oli Ullah

Course: CSE 425 Summer’19

What you will learn from this slecture?

● Programming language’s history and implementation methods
● Von Neumann Computer Architecture

Programming Language:
A programming language is a set of instructions using which we can instruct computer easily
instead of writing machine code by ourselves. The translation from a programming language to
machine code is done usually by a compiler or interpreter.

Why do we use programming languages?
Since, computer only understands binary code and writing binary code is error prone and time
consuming, we invented programming language which helps us to read, write and maintain
program for computer easily without working directly with binary code.

Why are there so many programming languages?
We have created and are still creating new programming languages to meet up our needs.A few
reasons that often thrives our quest of designing new languages are as follows:

● Evolution: Everyday we are learning better ways of doing things.
● Pleasure: To make the implementation of language pleasant to use.
● Purpose: To meet special purposes. Example of some of these special purposes are:

○ System programming
■ Languages: C, C++

○ Numerical computations
■ Languages: Fortran, A Programming Language (APL)

○ Data manipulation
■ Languages: Lisp, SQL

○ Network oriented programs
■ Languages: Java, C, Python

○ Embedded systems
■ Languages: Rust, C

● Hardware: Since our hardwares are improving to perform much faster day by day and to
work with a specific hardware, new programming languages may be created.

Why should we study programming languages?
Studying programming languages helps us to make the right choice of programming language to
work to our specific purpose and if we know what a programming language does behind the
scene, we can write efficient code which will reduce implementation and maintenance costs.

Implementation Methods
Programming Language Implementation describes the method for how your code (such as Java)
as an example is converted to a language that the machine (processor etc) understand. We refer
to this as machine code.
There are three approaches for programming language implementation:

1. Compilation
2. Pure interpretation
3. Hybrid implementation

1. Compilation
Compiler is a software or a program that process all source code and translate into machine
understandable code. This process is known as Compilation.

Advantage
1. Much faster than other implementation.
2. Better error detection mechanisms.
3. More secured

Disadvantage

1. Hardware and operating system (OS) dependent
2. Debugging is comparatively hard
3. Generates intermediate object code, hence requires more memory.

A compiler basically executes four major steps

1. Lexical analyzer
2. Syntax analyzer
3. Intermediate code generator and semantic analyzer
4. Code generator

Lexical analyzer: The compiler converts the sequence of characters that appear in the source
code into a series of strings of characters (known as tokens), which are associated with a specific
rule by a program called a lexical analyzer. A symbol table is used by the lexical analyzer to
store the words in the source code that correspond to the token generated.
Output: Lexical unit.

int x = y + z * 2;

Token names Sample of tokens

keyword int

identifier x, y, z

separator ;

operator =, +

literal 2

Table 1: Tokens

Syntax analyzer: This is the second phase of the compiler. In this it checks if the given input is
in the correct syntax of the programming language. It is known as the Parse Tree or Syntax
Tree. This phase use context free grammar (CFG).
Semantic analyzer: Semantics help interpret symbols, their types, and their relations with each
other. Semantic analysis judges whether the syntax structure constructed in the source program
derives any meaning or not.
A statement id + id * id would have the following syntax tree:

Code generation: In this phase compiler generate machine understandable code (Machine Code)
that can be readily executed by a computer.

Diagram of compilation process:

2. Pure interpretation
Pure interpretation is another method of implementation. With this approach source codes or
programs are interpreted by another program called an interpreter.

Advantage

1. Easy to debug.

2. No intermediate code generate hence memory efficient.
3. Support dynamic typing.
4. The interpreter reads a single statement and shows the error if any. You must

correct the error to interpret next line.

Disadvantage

1. Comparatively slower than compiler.
2. Interpreters can be susceptible to code injection attacks (a code injection attack is

that the attacker tricks the application into running some code statements that are
not part of the intended functions of that application).

3. Hybrid implementation
In a hybrid implementation system, compiler and pure interpreter are used together where a high
level programming language is translated to intermediate language (for instance: Java Bytecode)
which is very close to machine code hence allows easy interpretation. This implementation is
faster than pure interpretation implementation because the source language is compiled only
once.

Examples: Python, Java, C++ 11, Swift, Perl.

Advantages of hybrid implementation:

● Portability: Portable to any machine that has a bytecode interpreter. Different interpreter
for different hardwares. For instance, Java Virtual Machine (JVM).

● Platform independent: It can be run in different OS since the intermediate code is not
platform specific.

● Error detection: It provides better error detection mechanism. Error is detected during
compilation period. Hence, if compiled code is error free, interpreter can simply interpret
the code. Thus, it is making the interpreter more simple.

● Abstraction: This provides an abstraction to hardware and programmers, which makes
programmers worry less about the machine code.

Example of hybrid implementation using Java code taken from Wikipedia:

Consider the following Java Code:

outer:

for (int i = 2; i < 1000; i++) {
for (int j = 2; j < i; j++) {

 if (i % j == 0)

 continue outer;
}

System.out.println (i);
}

A Java compiler might translate the above Java code into Bytecode as follows:

0: iconst_2
1: istore_1
2: iload_1
3: sipush 1000
6: if_icmpge 44

9: iconst_2
10: istore_2
11: iload_2
12: iload_1
13: if_icmpge 31

16: iload_1
17: iload_2

18: irem
19: ifne 25

22: goto 38

25: iinc 2, 1
28: goto 11

31: getstatic
34: iload_1
35: invokevirtual
38: iinc 1, 1
41: goto 2

44: return

As seen, the bytecode already looks very simple than the Java code. So, interpretation of
bytecode will be much easier than the actual high level Java code.

Diagram of a Hybrid implementation system:

Table of Programming language

Programming
language

Inventor Year Use Specialty Limitations

Assembly
language

Kathleen
Booth

1947 General Understanding
Hardware

Hardware dependent, No
SDK

Fortran John Backus 1957 Application, numerical
computing

Faster for numerical
calculations

Poor string handling,
Data scoping is limited.

ALGOL Backus,
Bauer, Green,
MORE...

1960 Application Came up with first
commercial
application

Hard to learn

COBOL Howard
Bromberg,
Howard
Discount,
MORE...

1969 Application, business Designed for business
use, English-like
syntax,

Compilation time of a
COBOL program might
be greater than other
machine-oriented
programming language

Lisp(Scheme) John
McCarthy

1975 General Unified, simple and
elegant way of
representing both
code and data.

Poor readability,
Unintuitive syntax

C

Dennis
Ritchie

1972 Application, system,
general purpose,
low-level operations

C combines the
features of both high
level and low level
languages.

Hard to debug,
Doesn't perform runtime
data type checking

C++ Bjarne
Stroustrup

1985 Application, system Portable language,
Much faster and
efficient, Support
namespace

Lack of garbage
collection

Python Guido van
Rossum

1990 Application, general,
web, scripting, artificial
intelligence, scientific
computing

Portable, Extensive
support libraries,
Dynamically typed
language

Slow, memory
consumption is high,

Java James
Gosling

1995 Application, business,
client-side, general,
mobile development,
server-side, web

Platform-Independent
, Multithreaded, easy
to learn

Slower performance,
Memory consumption is
high

PHP Rasmus
Lerdorf

1995 Server-side, web
application

Work with databases
more efficiently, Easy
to learn

Poor error handling

Javascript Brendan Eich 1995 Client-side, server-side,
web

Faster, Easy to learn Lack of client-side
security

Table 2: Programming language

Computer Architecture: Historically there have been two types of computers:

 Fixed program computer: There function is very specific and they couldn’t be programmed.

Stored program Computer: These can be programmed to carry out different tasks,applications
are stored on them hence the name

The modern computers are based on a stored-program concept introduced by John Von
Neumann. In this stored program concept, programs and data are stored in a separate storage unit
called memories and are treated the same. This novel idea meant that a computer build with this
architecture would be much easier to reprogram. Von Neumann architecture was first published

by John Von Neumann in 1945. His computer architecture design consists of a Control Unit,
Arithmetic and logic unit(ALU), Memory unit, Registers and Inputs/Outputs. This design is still
used in most computers produced today.

Central Processing Unit:
The Central processing unit is the electronic circuit responsible for executing the instructions of
a computer program. It is sometimes referred to as the microprocessor or processor. The Central
Processing Unit (CPU) contains Arithmetic & logic unit (ALU), Control Unit (CU) and variety
of registers.

Registers:
Registers are high speed storage areas in Central Processing Unit. All data must be stored in a
register before it can be processed.

Control Unit:
The control unit controls the operation of the computer’s Arithmetic Logic Unit, Memory and
Input/Output devices, telling them how to respond to the program instructions it has just read and
interpreted from the memory unit. The Control Unit also provides the timing and control signals
required by other computer components.

Buses:
Buses are components by which data is transmitted from one part of a computer to
another,connecting all major internal components to the CPU and memory. A standard CPU bus
is comprised of a control bus, data bus and address bus.

Address Bus: Carries the addresses of data (but not the data) between the processor and
memory.

Data Bus: Carries data between the processor ,the memory unit and the input/output devices.

Control Bus: Carries control signals/commands from the CPU (and status signals from other
devices) in order to control and coordinate all the activities within the computer.

Memory Unit:
The memory unit consists of Random Access Memory (RAM), sometimes referred to as primary
or main memory. Unlike a hard drive (Secondary memory) this memory is fast and also directly
accessible by the CPU. RAM is split into partitions. Each partition consists of an address and its
contents (both i binary form). The address will uniquely identify every location in the memory.
Loading data from permanent memory (hard drive) into the faster and directly accessible
temporary memory (RAM), allows the CPU to operate much quicker.

Advantages of Von Neumann Architecture

1. Less physical space is required than Harvard.
2. Handling just one memory block is simpler and easier to achieve.
3. Data can be retrieved in the same manner.

History of Programming Languages:

The first programming language was created in 1883, when a woman named Ada Lovelace
worked with Charles Babbage on his very early mechanical computer, the Analytical Engine.

Assembly Language (1949): First widely used in the electronic delay storage automatic
calculator, assembly language is a type of low-level computer programming language that
simplifies the language of machine code, the specific instruction needed to tell the computer
what to do.

Fortran (1957): A computer programming language created by John Backus for complicated
scientific, mathematical, and statistical work ,Fortran stands for formula translation.it is one of
the programming languages still used today.

Algol (1958): Created by a committee for scientific use, Algol stands for Algorithmic Language.
Algol served as a starting point in the development of languages such as Pascal, C, C++, and
Java.

LISP (1959): Created by John McCarthy of MIT, LISP is still in use. It stands for LISt
Processing language. It was originally created for artificial intelligence research but today can be
used in situations where Ruby or Python are used.

Pascal (1970): Developed by Niklaus wirth , Pascal was named in honor of the French
mathematician, physicist, and Philosopher Blaise Pascal.It is easy to learn and was originally
created as a teaching tool of computer programming.Pascal was the main language used for
software development in Apple’s early year.

C (1972): Developed by Dennis Ritchie at Bell Labs, C is considered by many as high-level
language.A high-level computer programming language is closer to human language and more
removed from the machine code.C was created so that an operating system called UNIX could be
used on many different types of computers.It has influenced many other languages including
Ruby,c#, Go, java , Java script, Perl, PHP, python.

Objective-C (1983): created by Brad cox and Tom Love, Objective C is the main programming
language used when writing software for macOSand iOS Apple’s operating system.

C++ (1983): C++ is an extension of the C language and was developed by Bjarne Stroustrup.It
is one of the most widely used languages in the world.C++ used in game engines and
high-performance software like Adobe Photoshop.Most packaged software is still written in
C++.

Python (1991): Designed by Guido Van Rossum, Python is easier to read and requires fewer
lines of code than many other computer programming languages. It was named after the British
comedy group Monty Python. Popular sites like Instagram use frameworks that are written in
Python.

Java (1995): Originally called Oak, Java was developed by Sun Microsystems. It was intended
for cable boxes and hand-held devices but was later enhanced so it could be used to deliver
information on the World Wide Web. Java is everywhere, from computers to smartphones to
parking meters. Three billion devices run Java!

PHP (1995): Created by Rasmus Lerdorf, PHP is used mostly for Web development and is
usually run on Web servers. It originally stood for Personal Home Page, as it was used by
Lerdorf to manage his own online information. PHP is now widely used to build websites and
blogs. WordPress, a popular website creation tool, is written using PHP.

Ruby (1995): Ruby was created by Yukihiro “Matz” Matsumoto, who combined parts of his
favorite languages to form a new general-purpose computer programming language that can
perform many programming tasks. It is popular in Web application development. Ruby code
executes more slowly, but it allows for computer programmers to quickly put together and run a
program.

C# (2000): Developed by Microsoft with the goal of combining the computing ability of C++
with the simplicity of Visual Basic, C# is based on C++ and is similar to Java in many aspects. It
is used in almost all Microsoft products and is primarily used for developing desktop
applications.

Swift (2014):Developed by Apple as a replacement for C, C++, and Objective-C, Swift is
supposed to be easier to use and allows less room for mistakes. It is versatile and can be used for
desktop and mobile apps and cloud services.

Most computer programming languages were inspired by or built upon the concepts from
previous computer programming languages. Today, while older languages still serve as a strong
foundation for new ones, newer computer programming languages make programmers’ work
simpler.

References:

1. https://en.wikipedia.org/wiki/Java_bytecode
2. https://getrevising.co.uk/grids/von-neumann-architecture
3. https://en.wikipedia.org/wiki/Comparison_of_programming_languages

https://en.wikipedia.org/wiki/Java_bytecode
https://getrevising.co.uk/grids/von-neumann-architecture
https://en.wikipedia.org/wiki/Comparison_of_programming_languages

