

North South University

Slecture 02

Group: Group 25

Course: CSE 425 – Concepts of Programming Languages

Section: 3

Faculty Initial: MSK1

Faculty Name: Md. Shahriar Karim

Semester: Summer 2019

Date of Submission: 09th July 2019

Group Members:

1. Humayara Binte Omar 1620484042

2. Fatema Tuz Zohra 1620191042

3. Nabiul Hoque Khandakar 1631164642

What is scope?

The scope of a variable is the range in which it is visible. A variable is visible in a statement if it can be

referenced in that statement.

Example of scoping:

int x = 4; /* variable x defined with file scope */

2 long myfunc(int x, long y); /* variable x has function */

3 /* prototype scope */

4 int main(void)

5 {

6 /* . . . */

7 }

Two types of scoping: Static scoping and dynamic scoping

Static scoping:

Lexical scoping (sometimes known as static scoping) is a convention used that sets the scope of a variable

in such a way that it can only be called from within the block of code in which it is defined. The scope is

determined when the code is compiled. A variable declared in this fashion is sometimes called a private

variable.

Example: Languages such as C and Pascal apply to static scoping.

Advantages:

1. Readability

2. Locality of reasoning

3. Less run-time overhead

Disadvantages:

Some loss of flexibility

There are two categories of static-scoped languages:

1. In which subprograms can be nested, which creates nested static scopes. Nested scopes are

created only by nested class definitions and blocks. Ada, JavaScript, Common LISP, Scheme,

Fortran 2003+, F#, and Python allows nested subprograms but C do not.

2. In which subprograms cannot be nested. In this category static scopes are also created by

subprograms but nested scopes are created only by nested class definitions and blocks.

Dynamic Scoping:

Dynamic scoping creates variables that can be called from outside the block of code in which they are

defined. A variable declared in this fashion is sometimes called a public variable. Dynamic scoping is best

avoided since it makes the code hard to read/ understand at first glance. Dynamic scope can be

determined only at run time.

Advantages:

 The only advantage of dynamic scoping is writability. It is more convenient and it provides more

flexibility than static scoping. For example, in some cases, some parameters passed from one subprogram

to another are variables that are defined in the caller. None of these need to be passed in a dynamic

scoped language, because they are implicitly visible in the called subprogram.

Disadvantages:

1. The inability to statically check for references to non-local variables.

2. Dynamic scoping also makes program difficult to read because the calling sequence of

subprograms must be known to determine the meaning of references to non-local variables.

3. There is no way to protect local variables from being accessed to by subprograms because local

variables of subprogram are all visible to all other executing subprograms.

4. Accessing to non-local variables in dynamic scoping takes far longer than accesses to non-local

variables when static scoping is used.

Static Scoping:

Example:

intx = 10;

// Called by g()
intf()
{
 returnx;
}

// g() has its own variable
// named as x and calls f()
intg()
{
 intx = 20;
 returnf();
}

intmain()
{
 printf("%d", g());
 printf("\n");
 return0;
}

OUTPUT: 10
To sum up in static scoping the compiler first searches

in the current block, then in the surrounding blocks

successively and finally in the global variables.

Dynamic Scoping:

Example:

intx = 10;

// Called by g()
intf()
{
 returnx;
}

// g() has its own variable
// named as x and calls f()
intg()
{
 intx = 20;
 returnf();
}

main()
{
 printf(g());
}

OUTPUT: 20

in dynamic scoping the compiler first searches

the current block and then successively all the

calling functions.

In static scoping a variable always refers to its top

level environment.

In dynamic scoping, a global identifier refers to the

identifier associated with the most recent

environment.

In most of the programming languages including

C, C++ and Java, variables are always statically (or

lexically) scoped.

Dynamic Scoping is uncommon in modern

languages.

Scope rules determined at compile-time. Scope rules must be determined during run-time

Evolution of the Major Programming Languages:

Languages : Reasons for success : Comparison:

Plankalkül • Advanced features in the

area of data structure.

• Inclusion of mathematical

programs.

• Arrays and records in this

language is called structs in

C-based programming

languages

• It included iterative

statement similar to Ada.

• Similar assertion function

like java.

FORTRAN(Formula

Translation computing

programming

language)

• FORTRAN is the

dominating language in the

supercomputers.

• FORTRAN compilers are

mostly available.

• It is earlier first

programming language and

the best at numerical

analysis and technical

calculations.

• This language is reliable to

the Meteorological

Department involves

extensive numerical

weather computations.

• A lot of existing code.

• FORTRAN has efficient

compilers compared to the

C++.

• FORTRAN is the best for

numerical computations

compared to all other

languages.

LISP (List Processing) • Provide advanced features

for list processing,
• LISP is different from the

imperative languages,

especially useful for

artificial intelligence (AI).

• Possible to write Lisp

programs that rewrite other

Lisp programs in arbitrary

ways.

• LISP functions can be

manipulated in the same

the way data is

manipulated.

because it is a functional

programming language and

because the appearance of

LISP programs is very

different from those in

languages such as , Java or

C++.

ALGOL 60 • The concept of block

structure was introduced.

• Two different means of

passing parameters to

subprograms were allowed:

pass by value and pass by

name.

• Procedures were allowed

to be recursive. The

ALGOL 58 description

was unclear on this issue.

Note that although this

recursion was new for the

imperative languages, LISP

had already provided

recursive functions in

1959.

• Stack-dynamic arrays

were allowed

• The biggest advantage of

ALGOL over preceding

languages such as

FORTRAN and COBOL is

that it encourages the

production of well-

structured programs.

COBOL(Common

Business Oriented

Language)

• It's easy to read. Its high-

level English-like syntax

can resemble a well-

structured novel with

appendices, cross-reference

tables, chapters, footnotes

and paragraphs.

• It is self-documenting and

appeals to proponents of

readability.

• It can handle huge

processing volumes with

ease.

• It's still widely used for

business applications,

which is an area it excels

at. COBOL is relatively

easy to develop, use, and

maintain.

BASIC (Beginner's

All-purpose Symbolic

Instruction Code)

• Simple language.

• Its features made it popular

o minicomputers.

• Easy to learn.

• Much of the design of

BASIC came from Fortran,

with some minor influence

from the syntax of ALGOL

60

PL/I (Programming

language 1)

• Programs were allowed to

create concurrently

executing subprograms.

• It was possible to detect

and handle 23 different

types of exceptions, or

run-time errors.

• Subprograms were allowed

to be used recursively, but

the capability could

be disabled, allowing more

efficient linkage for non -

recursive subprograms.

• Pointers were included as a

data type.

• Cross-sections of arrays

could be referenced. For

example, the third row

of a matrix could be

referenced as if it were a

single-dimensioned array.

• PL/I is that it included what

were then considered the

best parts of ALGOL 60 -

recursion and block

structure ,Fortran IV

(separate compilation with

communication through

global data), and COBOL

60 (data structures,

input/output, and report-

generating facilities), along

with an extensive collection

of new constructs, all

somehow cobbled together

APL and SNOBOL • Dynamic typing

• Dynamic storage

allocation.

C • As a middle level

language, C combines the

features of both high level

and low level languages. It

can be used for low-level

programming.

• C is a structured

programming language

which allows a complex

program to be broken into

simpler programs called

functions. It also allows

free movement of data

• The original C

programming language is

not object-oriented, which is

the most significant

difference between the two.

C is what's called a

“procedural” programming

language, while C++ is a

hybrid language that's a

combination of procedural

and object-oriented.

across these functions.

• C is highly portable and is

used for scripting system

applications which form a

major part of Windows,

UNIX and Linux operating

system.

• C is a general purpose

programming language and

can efficiently work on

enterprise applications,

games, graphics, and

applications requiring

calculations.

• C language has a rich

library which provides a

number of built-in

functions. It also offers

dynamic memory

allocation.

Ada • strong typing

• Modularity mechanisms

(packages).

• Run-time checking

• Parallel processing (tasks,

synchronous message

passing, protected objects,

and nondeterministic select

statements),

• Exception handling, and

generics.

Smalltalk • Smalltalk was the first

programming language that

fully supported object

oriented programming.

• It was the first language to

adopt object oriented

programming, which absent

in all the other languages

before this.

C++ • C++ is a highly portable

language and is often the

language of choice for

multi-device, multi-

platform app development.

• C++ is an object-oriented

programming language and

includes classes,

inheritance, polymorphism,

data abstraction and

• C++ uses compiler only.

C++ is compiled and run

using the compiler which

converts source code into

machine code so, C++ is

platform dependent. java is

pure object oriented

language but C++ is a both

procedural and object

oriented programming

encapsulation.

• C++ allows exception

handling and function

overloading, which are not

possible in C.

• C++ is a powerful, efficient

and fast language. It finds a

wide range of – from GUI

applications to 3D graphics

for games to real-time

mathematical simulations.

language. Java and CPP

both are object oriented

programming languages.

Java • Java was designed to be

easy to use, write, compile,

debug and learn.

• Object oriented

programming (OOP) is

associated with concepts

like class, object,

inheritance, encapsulation,

abstraction, polymorphism,

etc. Java is object oriented

programming language and

allows you to develop

modular programs and

reusable code objects.

• Java offers the comfort of

write program once and

run on any hardware and

software platform and any

Java compatible browser.

Perl • Simplified grammar

• Lexical scoping

• Object oriented

programming

• Extensibility.

JavaScript • No matter where you host

JavaScript, execute always

on client environment to

save a bandwidth and make

execution process fast.

• JavaScript used to fill web

page data dynamically such

as drop-down list for a

Country and State.

• JavaScript syntaxes are

easy and flexible for

developers. In-short easy

language to get pick up in

development.

• The biggest advantages to

a JavaScript having a

ability to support all

modern browser and

produce the same result.

PHP • The high speed of PHP

gives it an advantage over

other scripting languages

and provides

functionalities such as the

server administration and

mail functionalities.

• It is Open Source.

Therefore, PHP is readily

available and is entirely free.

• JavaScript is a client-side

scripting language whereas

PHP is a server-side

scripting language.

Python • Presence of third party

Modules

• Extensive support libraries

• Open source and

community development

• Learning ease and support

available

• User-friendly data

structures

• Productivity and speed

• The biggest difference

between the Java and

Python languages is that

Java is a statically typed and

Python is a dynamically

typed.

A good language design is quintessential in terms of efficiency and executability. Our early principles of

a good design criteria only focused on efficiency in execution as machines were extremely slow and

programming speed was a necessity. Earlier languages were designed to resemble the machine code to be

generated to accelerate the execution time.

As we progress through time, efficiency on the user side has somewhat become the forefront of a well-

designed programming language. Therefore, we have a new language evaluation criteria on our hands

which cater to a programmer’s efficiency, it is as follows:

1. Efficiency

Design efficiency can be divided into 3 subgroups:

● Readability:

How easy can the design in the programmer’s head be mapped to code in that language

and the ease with which programs can be read and understood.

● Writability:

The ease with which programs can be developed for a given program domain. An

expressive language allows for easy representation of complex processes and structures.

● Reliability

The extent to which a program will perform according to its specifications or the

dependability that the written program will work. Non-reliable programs tend to cost

significantly at later stages.

2. Regularity

Regularity ensures that there are no unusual restrictions, interactions, or behavior by assessing

how effectively the features a language is integrated. In practice, there should be no surprises in

the way the language features behave. Regularity can also be subdivided into 3 concepts:

● Generality

Generality rule advices to avoid special cases and generalizes related constructs into one

construct. For example,

In Pascal, it has 3 different loop structures (while, repeat, and for). Not a good example of

generality

In Ada, it has 1 loop structure with variations. A good example of generality

● Orthogonality

Orthogonality rule dictates that language constructs (i.e loops) should not behave

differently in different contexts or there should be no unusual implications, should be

meaningful. For example,

In C, all parameters are passed by value except arrays, bad orthogonality

● Uniformity

Uniformity rule states that there should be a level of consistency between appearance and

behavior of language constructs. For example, in C++, the operators “&” (the bitwise

and) and “&&” (the logical and) look almost indistinguishable but formulate very distinct

results, bad uniformity

3. Expressiveness

It is the ease with which a language can express complex structures, meaning, the ease to write

understandable code and conciseness of complex processes. For example,

In C, the line of code for copying strings, “while (*s++ = *t++);” is very concise and expressive

for the operation it’s performing

4. Extensibility

A programming language should be open in a sense that it should give the programmer the

freedom to add features like:

● New Data Types

● Libraries and functions to libraries

● Keywords

 Such additions enhances the user’s overall experience of the language.

 Also enables growth for the language by the help of the community i.e Python, Java, C

 version releases.

 An example of extensibility would be,

 In C++, operator overloading is allowed. Good extensibility

 In Java, it is not. Bad extensibility

5. Restrictability :

A well designed language should enable a programmer to write programs successfully

irrespective of having vast knowledge of the language or its constructs. For example,

 designing a language with a similar syntax to a popular language allows users to pick up

 the language in a short period of time due to following common language conventions.

6. Security

Programs being written in the language should not cause any errors which hamper reliability.

Features like type checking ensures that the compiler doesn’t run into problems and secures the

program to avoid any sort of damages.

Criteria Definition Example

Efficiency The ease with which programs

be written in the language

Python, a well designed

language, that programmer’s

head can be mapped to code

easily according to public

acceptance in contrast to C/C++

or Java/FORTRAN

Generality(Regularity) Avoid special cases and

generalizes related constructs

into one construct

C lacks nested function

definitions(Bad Generality)

Orthogonality(Regularity) Language constructs should not

behave differently in different

contexts.

C passes all parameters by

value, except arrays, which are

passed by reference(Bad

Orthogonality)

Uniformity(Regularity) A level of consistency should be

there between appearance and

behavior of language constructs

In C++, the operators & (bitwise

and), && (logical and) yield

very different results, but look

confusingly similar(Bad

Uniformity)

Expressiveness It is the ease with which a

language can express complex

structures

while (*s++ = *t++); in C.

Very expressive, very

concise(Good Expressiveness)

Extensibility There should be some general

mechanism by which the user

can add features to a language.

Version releases on popular

languages like python, java etc.

Restrictability Language design should enable

a programmer to program

usefully having minimal

knowledge of the language.

A language should maintain

consistency with accepted

notations and conventions

Security Programs should not run into

runtime or compile time errors

or damages

Types, type checking, and

variable declarations

References:

https://ivanapurnomo.wordpress.com/2013/04/08/concepts-of-programming-languages-chapter-5-

names-bindings-and-scopes/

http://ngocchan-nguyen.blogspot.com/2011/03/what-are-advantages-and-disadvantages.html

http://evankristia.blogspot.com/2015/11/chapter-5-review-question-and-problem.html

https://www.geeksforgeeks.org/static-and-dynamic-scoping/

http://evankristia.blogspot.com/2015/11/chapter-5-review-question-and-problem.html

https://whatis.techtarget.com/definition/lexicalscopingstaticscoping

http://evankristia.blogspot.com/2015/11/chapter-5-review-question-and-problem.html

https://whatis.techtarget.com/definition/lexical-scoping-static-scoping

https://www.geeksforgeeks.org/static-and-dynamic-scoping/

www.cse.aucegypt.edu/~rafea/CSCE325/slides/2/LanguageDesign.pdf

https://ivanapurnomo.wordpress.com/2013/04/08/concepts-of-programming-languages-chapter-5-names-bindings-and-scopes/
https://ivanapurnomo.wordpress.com/2013/04/08/concepts-of-programming-languages-chapter-5-names-bindings-and-scopes/
http://ngocchan-nguyen.blogspot.com/2011/03/what-are-advantages-and-disadvantages.html
http://evankristia.blogspot.com/2015/11/chapter-5-review-question-and-problem.html
https://www.geeksforgeeks.org/static-and-dynamic-scoping/
http://evankristia.blogspot.com/2015/11/chapter-5-review-question-and-problem.html
https://whatis.techtarget.com/definition/lexicalscopingstaticscoping
http://evankristia.blogspot.com/2015/11/chapter-5-review-question-and-problem.html
https://whatis.techtarget.com/definition/lexical-scoping-static-scoping
https://www.geeksforgeeks.org/static-and-dynamic-scoping/
http://www.cse.aucegypt.edu/~rafea/CSCE325/slides/2/LanguageDesign.pdf?fbclid=IwAR10oGkhNAQFXQnYP4NPZYekyaWye3ShT8OQxVU3LYYD1T3odJB14BwBUqc
http://www.cse.aucegypt.edu/~rafea/CSCE325/slides/2/LanguageDesign.pdf?fbclid=IwAR10oGkhNAQFXQnYP4NPZYekyaWye3ShT8OQxVU3LYYD1T3odJB14BwBUqc

