

CONCEPTS OF PROGRAMMING

LANGUAGE

GROUP NAME: Electron

Slecture 03
Course Code: CSE425 Semester: Summer 2019

Faculty Initial: MSK1

Section: 03

Name ID

Shahriar Rahman 1530730643

Md Yeahea Shibly 1610258042

Sourov Sarker 1610427042

ABSTRACTION

GENERAL DEFINITION:

In software engineering and computer science, abstraction is the process of taking away or

removing characteristics from something in order to reduce it to a set of essential characteristics.

Simply, it is a technique for arranging complexity of computer systems. It is one of the key

concepts of object-oriented programming (OOP) languages and the concept of abstraction has

itself become a declarative statement in C++, Object Pascal, or Java, using the keywords virtual

(in C++) or abstract and interface (in Java). After such a declaration, it is the responsibility of the

programmer to implement a class to instantiate the object of the declaration.

EXAMPLE 1: OWNER AND CAR

A general explanation of how an abstract works and what is that imagining a car. For instance,

most people do not know mechanically how a car actually works (what is happening underneath

the hood when we drive or brake), however, many knows how to drive a car and how to interact

with its interface (wheels, gear, accelerator, etc.), implying that he/she abstracted a way of what a

car actually is to only needing to understand its basic interface. Hence, they do not have to know

the details of what is really happening underneath the hood, but only need to know the basic set

of instructions for it.

This is the most basic Example of abstraction.

User owns a Car.

The car runs properly with its necessary parts.

An engine is necessary to run the car.

User  Car;

Car  Necessary Parts;

Engine  Car;

pseudocode:

Abstract class User{

 Abstract Car method declaration;

}

 Class Engine extends User {

 Car method definition;

 Main Engine Method{

 Create Object;

 Call Car Method;}}

 CODE DEMONSTRATION (Using Java):

DEMONSTRATION OUTPUT:

EXAMPLE 2: NSU DATABASE DATA ACCESS

For instance, a User or a student of North South University is completing an application form

from which his/her new information will be stored in the NSU database. The form has

information boxes that must be completely filled (First and Last Name, ID, Phone, Hobby,

Expeditions, etc.). When required, it is possible to fetch all the relevant information regarding the

student’s credentials. However, there are some redundant information that is not required to fetch

even though it is already stored in the database. So, the system will automatically ignore

information such as Hobby and Expeditions while fetching necessary data.

This Example consists of multiple abstract methods.

Student  First Name, Last Name, ID, Phone, Hobby, Expeditions;

NSU DATABASE extends Student:

First Name  x; Last Name  y; ID 153xxx;

Phone  017xxx; Hobby  xyz; Expeditions  abc;

NSU SYSTEM  First Name, Last Name, ID, Phone;

Pseudocode:

Abstract class User{

 All Abstract Method Declarations;

FirstName Method; LastName Method; ID Method; Phone Method; Hobby Method;

Expeditions Method;

}

 Class NSU{

 Method definition;

 Main Engine Method{

 Create Object;

 Call All Relevant Methods;

}}

CODE DEMONSTRATION (Using Java):

DEMONSTRATION OUTPUT:

EXAMPLE 3: MATHEMATICAL SHAPES

This example is related to basic mathematics. A Shape is an abstract class, and its

implementation is provided by the Rectangle, Circle and Triangle classes. Mostly, it is unknown

about the implementation class (which is hidden to the end user), and an object of the

implementation class is provided by the Factory Method.

A Factory Method is a method that returns the instance of the class.

In this example, if an instance of Rectangle class is created, draw() method of Rectangle class

will be invoked.

Shape  draw

Rectangle  draw  output “drawing a Rectangle”;

Circle draw  output “drawing a Circle”;

Triangle draw  output “drawing a Triangle”;

Example (get Circle & Triangle only)  draw Circle and draw Triangle;

Pseudocode:

Abstract Class Shape {

Abstract draw Method declared;}

class Circle extends Shape {

draw Method defined within; }

class rectangle extends Shape{

draw Method defined within; }

class triangle extends Shape {

draw Method defined within; }

Class Exp3 {

Create Only Relevant Objects;

 Relevant Method Calls;

}

CODE DEMONSTRATION (Using Java):

DEMONSTRATION OUTPUT:

EXAMPLE 4: BANKING

This example is based on Rate of Interest.

Bank  interest

BANK_ASIA  Bank  set interest rate;

JANATA_BANK  Bank  set interest rate;

TestBank  BANK_ASIA interest rate and JANATA_BANK interest rate

Pseudocode:

Abstract class Bank{

Abstract GetInterest method;

}

Class BANK_ASIA extends Bank {

Return GetInterest with a Value;

}

Class JANATA_BANK extends Bank {

Return GetInterest with a Value;

}

Class TestBank{

Object Creation;

Print interest Rate for each Bank;

}

CODE DEMONSTRATION (Using Java):

DEMONSTRATION OUTPUT:

EXAMPLE 5: BIKE

In this example, an abstract class can have a data member, abstract method, method body (non-

abstract method), constructor, and even main() method.

Bike  Bike Constructor  Run  Change Gear

HONDA  Bike  Run

Example  Run AND Change Gear

Pseudocode:

Abstract Class Bike{

Constructor();

Abstract Run; Abstract method Declaration

ChangeGear Method;

}

Class Honda extends Bike{

Run Method Define;

}

Class Example5{

Create Object;

Run;

Change Gear;

}

CODE DEMONSTRATION (Using Java):

DEMONSTRATION OUTPUT:

TYPES OF ABSTRACTION

Typically abstraction can be seen in two ways:

• Data abstraction

• Control abstraction

DATA ABSTRACTION

Data abstraction is the way to create complex data types and exposing only meaningful

operations to interact with the data type, whereas hiding all the implementation details from

outside works. The benefit of this approach involves capability of improving the implementation

over time e.g. solving performance issues is any. The idea is that such changes are not supposed

to have any impact on client code since they involve no difference in the abstract behavior. Data

abstraction can be defined in two ways.

Abstraction using Classes: In C++, abstraction implementation is possible by creating classes.

Class helps the user to group data members and member functions using available access

specifiers. A Class can make a decision on which data member will be able to be seen to outside

world and which is not.

Abstraction in Header files: For example In C++, considering the sqrt() method present in math.h

header file. Whenever a user need to calculate square root of a number, he/she can simply call

the function sqrt () present in the math.h header file and pass the numbers as arguments without

knowing the underlying algorithm according to which the function is actually calculating power

of numbers.

CONTROL ABSTRACTION

A software is essentially a collection of numerous statements written in any programming

language. Most of the times, statement are similar and repeated over places multiple times.

Control abstraction is the process of identifying all such statements and expose them as a unit of

work. This feature normally used when creating a function to perform any work. In most

programming languages, a principal mechanism for control abstraction is known as Subroutines.

A subroutine performs its operation on behalf of a caller, who waits for the subroutine to

complete before continuing execution. Most subroutines are parameterized: the caller passes

arguments that impacts the subroutine's operations, or provide it with data on which to operate. A

function is when a subroutine returns any type of value, but when it does not return any value

then it is known as a procedure. Subroutine is required to be declared in most languages before

they are used. However, some do not such as in Fortran, C, and LISP).

ADVANTAGES OF ABSTRACTION

• It helps the user to avoid writing the low level code.

• It increases code efficiency. Avoids code duplication and increases reusability.

• Can change internal implementation of class independently without affecting the user.

• Helps to increase security of an application or program as only important details are provided

to the user.

• It helps having more self-contained modules.

• From a programmer’s perspective, abstraction makes the application extendable in much easier

way. It makes refactoring much easier.

• Improves Readability. If things are properly abstracted, the reader doesn't need to retain

everything in his/her head at once.

• It hides implementation logic from another class. The other class does not need to know about

the logic. It simply uses the class without knowing about implementation. Even any update to the

logic doesn't require modification of another class.

DISADVANTAGES OF ABSTRACTION

• Execution speed: In order to execute an abstraction, the code implementing needs to handle

cases and situations which may not always be needed - or often are not needed - by many usage

scenarios. This will typically make code using the abstractions slower than it would be if the

code directly implemented the operation without using the abstraction.

• Code size. This rarely matters on larger systems nowadays, but it can be a significant problem

in small devices or constrained environments. The extra code needed to fully implement an

abstraction adds line counts and ultimately the code size, and if the code is not carefully

implemented, it can end up having lots of extra code, leading to overlarge runtime executables

and ultimately making the device itself more expensive.

• Problem while dealing with database schemas. Relational databases are extremely unforgiving

of badly-executed abstractions and abstraction layers.

Context Free Grammar: A set of rules/ productions used to generate patterns of strings. It helps us to

describe any language.

Context Free Grammar (CGF) has 4 tuples.

 V => Variable/non-terminal

 T=> Set of terminal

 P=> Set of productions/rules

 S=> Start Variable

S=> 01 | 0S1

Or , we can say it as

 S=> 01

 S=> 0S1

Variable, V= {S}

 Left hand side’s(LHS) capital letters are variable

Terminal, T= {01}

 Except Variable Right hand side’s(RHS) all contents are Terminals

Production, P= {01} | {0S1}

Start Point, S= S

 Start variable S is a Variable

Example: E=> E+T | T Here Variables, V= {E, T, F}

 T=> T*F | F Terminal, T= {+, *, (,), id}

 F=> (E) | id Start Point, S= E

Example: S=> (L) | a Here Variables, V= {S, L}

 L=> L, S |S Terminal, T= {(,), a, } Comma is a Terminal .

 Start Point, S= S

Context-free grammars can be modeled as parse trees. The nodes of the tree represent the symbols and

the edges represent the use of production rules. The leaves of the tree are the end result (terminal

symbols) that make up the string the grammar is generating with that particular sequence of symbols and

production rules.

Here “=> “is Derivation sign

Parse tree for making 0011 using the grammar: S  01 | 0S1

Example:

 S  01 | 0S1

We want to make 0011 using this grammar

 S  0S1

  0011

 Context Free Grammar (CFG)

Example 1:

L= {a^n |n>=0}

 = {ε, a, aa….} here ε means empty or nothing

We want to make “aa” using this grammar

A=> aA

 => aaA

 => aaε

 => aa

Example:

 S  01 | 0S1

We have to make 000111 using the

grammar

 S  0S1

 00S11

 000111

Grammar: A=> aA | ε

Example 2:

L= {a^n |n>=1}

 = {a, aa….} here ε means empty or nothing or stop

We want to make “aaa” using this grammar

A=> aA

 => aaA

 => aaa

Example 3:

L= {set of all strings over a, b}

Grammar: A=> aA | bA|ε

We have to make “aab” using the grammar

A aA | bA | ε

AaA

 aaA

 aabA

 aabε

Example 4:

L= {set of all strings which length at least 2}

Grammar:

SAAB

A a | b

B aB | bB | ε

We have to make “abb” using the grammar

Grammar: A=> aA | a

SAAB

 aAB

 abB

 abbB

 abbε

 abb

Example 5:

L= {set of all strings of at least 3 o’s}

Grammar:

S E0E0E0EE

E 0E | 1E | ε

We have to make “1000” using the grammar

Example 6:

L= {set of all strings which length at most2}

Grammar:

SAA

A a | b | ε

We have to make “aa” using the grammar

SAA

 aA

 aa

Example 7:

Make a CFG which starts with “a” and ends with “b”

Solution:

Grammar:S aAb

 A aA | bA |ε

Solution: Example 5

SE0E0E0E

 1E0E0E0E

 1ε0E0E0E

 10E0E0E

 10ε0E0E

 100ε0E

 1000ε

1000

Example 7

SaAb

 abAb

 abaAb

 abaεb

 abab

Example 8:

Make a CFG which starts and ends with different symbol

Solution:

Grammar:

SaAb | bAa

AaA | bA | ε

Example 9:

Make a CFG which starts and ends with same symbol

Solution:

Grammar:

SaAa | bAb | ε| a| b

AaA | bA | ε

Example 10:

Make a CFG for even length of a String

Solution:

Grammar:

S BS | ε

B AA

Aa | b

Example 9: We want to make “abaa”

using the grammar

SaAa

 abAa

 abaAa

 abaεa

 abaa

Example 10:

S BS

 AAS

 aabbS

 aabbε

 aabb

Example 8: We want to make “abab”

using the grammar

SaAb

 abAb

 abaAb

 abaεb

 abab

REFERENCE (APA FORMAT):

• Margaret Rouse - techtarget, Abstraction,

https://whatis.techtarget.com/definition/abstraction

• Computational thinking, What is Abstraction,

https://computersciencewiki.org/index.php/Abstraction

• Dinesh Thakur, What is Abstraction? Explain Type of Abstraction,

http://ecomputernotes.com/cpp/classes-in-c/type-of-abstraction

• IEEE, Control abstraction in parallel programming languages,

https://ieeexplore.ieee.org/document/185467

• GURU99, What is Abstraction in OOPs? Learn with Java Example,

https://www.guru99.com/java-data-abstraction.html

• DZone, Why Abstraction is Really Important,

https://dzone.com/articles/why-abstraction-really

• TutorialsPoint, Java - Abstraction,

https://www.tutorialspoint.com/java/java_abstraction

https://whatis.techtarget.com/definition/abstraction
https://computersciencewiki.org/index.php/Abstraction
http://ecomputernotes.com/cpp/classes-in-c/type-of-abstraction
https://ieeexplore.ieee.org/document/185467
https://www.guru99.com/java-data-abstraction.html
https://dzone.com/articles/why-abstraction-really
https://www.tutorialspoint.com/java/java_abstraction

