

Slecture-03

Abstraction And Context Free Grammar

Group Name: Infinite Loop

Members:

 1)H.m Ishtiaq Salehin-1610510042

 2)Quazi Rubayet Anjum Joy-1611016042

 3)Irin Sultana-1610343042

Abstraction

Abstraction is the process of making something easier to understand by ignoring

some of the details that may be unimportant. What this actually means is that

details are hidden and only important stuffs are shown. Abstraction gives the

programmer a lot of flexibility and convenience. “To abstract” means simply to

hide something. Programming languages are abstractions of the physical machine.

Abstraction allows us to focus on what is relatively important for the current

purpose. An example of abstraction can be a simple storage box. We use boxes in

our everyday life. We label them on basis of what they contain. The box itself is

the concept of abstraction. The box gives us the facility of storage. We can store

whatever we need in the box. The purpose of the box is to store whatever we need

to store. The box is not concerned about its contents. We can change the contents

of the box however and whenever we want.

Another example is given below:

This is an example of abstraction in java language. Here we see the shape class

which gives a bare minimum details we are supposed to get when we imagine any

shape. The shape class is extended by the circle class and the rectangle class. Both

have the same attributes of the shape class and also have some attributes that are

particularly suitable for them. When circle shaped objects are needed to be used

the radius of the circle has to be given. Again when rectangle shaped objects are

needed to be used the length and width must be given. The important fact is that

radius, length, width are not associated with shape super class. These attributes are

only relevant when those exact shapes (circle, rectangle) are considered. Thus the

shape class in the given picture is the concept of abstraction.

In the given code we see the interface IEquipment has two methods start and stop

but their exact functions are not given but in clsRefrigerator, the start method and

stop method are distinctly defined for a refrigerator. Also in clsBulb we see that

start and stop function is clearly defined. Point to be noted is that though the name

of the methods are same but their functions are different for clsRefrigerator and

clsBulb. Here IEquipment is an abstract class which just gives the concept of start

and stop. And in clsRefrigerator and clsBulb, the job of start and stop is

unambiguously defined. So we can see that the details are hidden in IEquipment

and we change the methods as we need for our purpose. This is why abstraction is

very important and widely used by programmers.

There are certain advantages to abstraction. Such as the programmer does not have

to write the low-level code. The programmer does not have to specify all the

register/binary-level steps or care about the hardware or instruction set details.

Code duplication is avoided and thus programmer does not have to repeat fairly

common tasks every time a similar operation is to be performed. It allows internal

implementation details to be changed without affecting the users of the abstraction.

Types of Abstraction

There are mainly two types of abstraction.

 Data abstraction

 Control abstraction

Data Abstraction

Data abstraction means hiding the details about the data. The concept of

representing important details and hiding away the implementation details is called

data abstraction. This programming technique separates the interface and

implementation. Data abstraction allows the definition and use of data types

without referring to how such types are implanted.

An example of data abstraction is the use of the data type double, which is an

abstraction of real numbers. The computer hardware limits the range of real

numbers that can be represented. Different computers use variety of representation

schemes for type double. We can use the data type double and its associated

operators (+,-,*, /,= , = =, <, and so on) without being concerned with the details of

its implementation.

Control Abstraction

Control abstraction provides the programmer the ability to hide procedural data.

It’s an abstraction of behavior. It provides an easier, higher level API to hide client

from unnecessary execution details. In control abstraction, a module is specified by

the function it performs. For example, a module to compute log of a value can be

abstractly represented by function log. It is the basis of partitioning in function

oriented approach. Another example of a control abstraction is the synchronization

on semaphore used to coordinate activities in an operating system.

When we write a program in a high level language the code is compiled and turned

into an intermediate level code which later gets transformed into target machine

code and then the program does as it is instructed. These process are hidden from

us by the machine, they just occur in back-end. This is also an example of control

abstraction.

Context Free Grammar (CFG)

The word context means topic. So context free grammar refers to anything that is

grammatically correct but the context is not important. A context free grammar is a

grammar which satisfies certain properties. In computer science, grammars

describe languages; specifically, they describe formal languages.

A context-free grammar (CFG) consisting of a finite set of grammar rules is

a quadruple (N, T, P, S) where

 N is a set of non-terminal symbols.

 T is a set of terminals

 P is a set of rules

 S is the start variable.

Terminal and nonterminal symbols are the lexical elements used in specifying the

production rules constituting a formal grammar. Terminal symbols are the

elementary symbols of the language defined by a formal grammar. Nonterminal

symbols or syntactic variables are replaced by groups of terminal symbols

according to the production rules.

For example

<digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

<integer> ::= ['-'] <digit> {<digit>}

The symbols (-,0,1,2,3,4,5,6,7,8,9) are terminal symbols and <digit> and <integer>

are nonterminal symbols.

A context-free grammar is simply a grammar where the thing that you're replacing

(left of the arrow) is a single "non-terminal" symbol. A non-terminal symbol is any

symbol you use in the grammar that can't appear in your final strings. For example:

S -> BBB

B -> 0

B -> 1

Here S is a non-terminal as it can’t appear in the final string but the values of B are

terminal because it has an exact value which can be used to replace B.

Example 1:

Grammar:

S → aSa (Rule: 1)

S → bSb (Rule: 2)

S → ε (Rule: 3) [‘ε’ means nothing or empty]

(i) We want to get ‘aa’ as the end product using the above given grammar

 S ⇒ aSa, (Rule: 1)

 ⇒ aεa, (Rule: 3)

 ⇒ aa

(ii) We want to get ‘bb’ as the end product using the above given grammar

 S ⇒ bSb, (Rule: 2)

 ⇒ bεb, (Rule: 3)

 ⇒ bb

(iii) We want to get ‘abba’ as the end product using the above given grammar

 S ⇒ aSa, (Rule: 1)

 ⇒ abSba, (Rule: 2)

 ⇒ abεba (Rule: 3)

 ⇒ abba

(iv) We want to get ‘baab’ as the end product using the above given grammar

 S ⇒ bSb, (Rule: 2)

 ⇒ baSab, (Rule: 1)

 ⇒ ba ε ab (Rule: 3)

 ⇒ baab

(v) We want to get ‘aabbbbaa’ as the end product using the above given grammar

 S ⇒ aSa, (Rule: 1)

 ⇒ aaSaa, (Rule: 1)

 ⇒ aabSbaa, (Rule: 2)

 ⇒ aabbSbbaa, (Rule: 2)

 ⇒ aabb ε bbaa (Rule: 3)

 ⇒ aabbbbaa

Example 2:

Grammar:

S → abB, (Rule: 1)

A → aaBb (Rule: 2)

A → ε (Rule: 3) [‘ε’ means nothing or empty]

B → bbAa (Rule: 4)

(i) We want to get ‘ab bba’ as the end product using the above given grammar

 S ⇒ abB, (Rule: 1)

 ⇒ ab bbAa (Rule: 4)

 ⇒ ab bb ε a (Rule: 3)

 ⇒ ab bba

(ii) We want to get ‘ab bb aa bba ba’ as the end product using the above given

grammar

 S ⇒ abB, (Rule: 1)

 ⇒ ab bbAa (Rule: 4)

 ⇒ ab bb aaBb a (Rule: 2)

 ⇒ ab bb aa bbAa ba (Rule: 4)

 ⇒ ab bb aa bb ε a ba (Rule: 3)

 ⇒ ab bb aa bba ba

(iii) We want to get ‘ab bb aa bb aa bba ba ba’ as the end product using the above

given grammar

S ⇒ abB, (Rule: 1)

 ⇒ ab bbAa (Rule: 4)

 ⇒ ab bb aaBb a (Rule: 2)

 ⇒ ab bb aa bbAa ba (Rule: 4)

 ⇒ ab bb aa bb aaBb a ba (Rule: 2)

 ⇒ ab bb aa bb aa bbAa b a ba (Rule: 4)

 ⇒ ab bb aa bb aa bb ε a b a ba (Rule: 3)

 ⇒ ab bb aa bb aa bba ba ba

(iv) We want to get ‘ab bb aa bb aa bb aa bba ba ba ba’ as the end product using

the above given grammar

 S ⇒ abB, (Rule: 1)

 ⇒ ab bbAa (Rule: 4)

 ⇒ ab bb aaBb a (Rule: 2)

 ⇒ ab bb aa bbAa ba (Rule: 4)

 ⇒ ab bb aa bb aaBb a ba (Rule: 2)

 ⇒ ab bb aa bb aa bbAa b a ba (Rule: 4)

 ⇒ ab bb aa bb aa bb aaBb a ba ba (Rule: 2)

 ⇒ ab bb aa bb aa bb aa bbAa ba ba ba (Rule: 4)

 ⇒ ab bb aa bb aa bb aa bb ε a ba ba ba (Rule: 3)

 ⇒ ab bb aa bb aa bb aa bba ba ba ba

Example 3:

S → aSb, (Rule: 1)

S → ab (Rule: 2)

(i) We want to get ‘ab’ as the end product using the above given grammar

 S ⇒ ab, (Rule: 2)

(ii) We want to get ‘a2b2’ as the end product using the above given grammar

 S ⇒ aSb, (Rule: 1)

 ⇒ aabb, (Rule: 2)

 ⇒ aabb

 ⇒ a2b2

(iii) We want to get ‘a3b3’ as the end product using the above given grammar

 S ⇒ aSb, (Rule: 1)

 ⇒ aaSbb, (Rule: 1)

 ⇒ aaabbb, (Rule: 2)

 ⇒ aaabbb

 ⇒ a3b3

(iv) We want to get ‘a4b4’ as the end product using the above given grammar

 S ⇒ aSb, (Rule: 1)

 ⇒ aaSbb, (Rule: 1)

 ⇒ aaaSbbb, (Rule: 1)

 ⇒ aaaabbbb, (Rule: 2)

 ⇒ aaaabbbb

 ⇒ a4b4

(v)) We want to get ‘a5b5’ as the end product using the above given grammar

 S ⇒ aSb, (Rule: 1)

 ⇒ aaSbb, (Rule: 1)

 ⇒ aaaSbbb, (Rule: 1)

 ⇒ aaaaSbbbb, (Rule: 1)

 ⇒ aaaaabbbbb, (Rule: 2)

 ⇒ aaabbb

 ⇒ a5b5

