
SLecture 4
CSE 425: Concepts of Programming Languages

Group: WillCodeForFood
Nazmul Hossain, Sabbir Mollah, Pritom Kumar Saha

July 30, 2019

SLecture 4 CSE425

Contents

1 Parse Tree 2

2 Abstract Syntax Tree (AST) 7

3 Ambiguity 9

4 Precedence 10

5 Associativity 12

6 Reference 14

1

SLecture 4 CSE425

1 Parse Tree

Parse tree, also known as derivation tree or concrete syntax tree or parsing
tree, represents the derivation grammar to yield strings. It represents some
syntactic structure of a string according to some context-free grammar.

Parse tree may be generated for a natural language or even for a program-
ming language. It is heavily used in the processing of programming languages
as well as natural language processing (NLP).

In the early years of computer programming, parsing was one of the funda-
mental problems compiler writers had to face. Nowadays it has become auto-
mated thanks to some tools like the Lex which generates lexical analyzers and
Yacc (Yet Another Compiler-Compiler) which is a Look Ahead Left-to-Right
(LALR) parser generator. Parse trees can be constructed in both bottom-up
and top-down method.

There are two categories of parse trees based on terminal nodes. These are:

Constituency-based parse trees:

The constituency-based parse trees distinguish between terminal and non-
terminal nodes. The leaf nodes are labeled by terminal categories of the gram-
mar and the interior nodes are labeled by the non-terminal categories.

Parse three depends on grammar. Even English grammars have parse trees.
For instance: If we consider an English sentence: We learned the programming
language from the professor.

2

SLecture 4 CSE425

〈sentence〉 → 〈noun phrase〉 〈verb phrase〉

→ 〈noun〉 〈verb phrase〉.
→ We 〈verb phrase〉.
→ We 〈verb〉 〈noun phrase〉 〈prepositional phrase〉.
→ We learned 〈noun phrase〉 〈prepositional phrase〉.
→ We learned 〈determiner〉 〈noun〉 〈prepositional phrase〉.
→ We learned the 〈noun〉 〈prepositional phrase〉.
→ We learned the programming language 〈prepositional phrase〉.
→ We learned the programming language 〈preposition〉 〈noun phrase〉.
→ We learned the programming language from 〈noun phrase〉.
→ We learned the programming language from 〈determiner〉 〈noun〉.
→ We learned the programming language from the 〈noun〉.
→ We learned the programming language from the professor.

The parse tree would look the tree below for the above grammar:

Figure 1: English Grammar Parse Tree (Constituency-based)

Dependency-based parse trees:

All nodes are considered as terminal int the dependency-based parse trees.
They contain fewer nodes than constituency-based parse trees on average. An
example of a dependency-based parse tree is as follows: We consider the En-
glish sentence: John hit the ball.

3

SLecture 4 CSE425

Figure 2: English Grammar Parse Tree (Dependency-based)

The constituency-based parse tree is the more popular grammar structure. This
is used for programming languages too.

In a programming language, if we define grammar as follows,

〈expression〉 → 〈expression〉 + 〈expression〉 |
〈expression〉 * 〈expression〉 |
〈number〉 | 〈digit〉

〈number〉 → 〈number〉 〈digit〉 | 〈digit〉

〈digit〉 → 0 | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | 9

Then the derivation of the number 234 is as follows:

〈number〉 → 〈number〉 〈digit〉
→ 〈number〉 〈digit〉 〈digit〉
→ 〈digit〉 〈digit〉 〈digit〉
→ 2 〈digit〉 〈digit〉
→ 2 3 〈digit〉
→ 2 3 4

4

SLecture 4 CSE425

The number 234 will be constructed in a parse tree as follows:

Figure 3: Parse tree for a number

Using the same grammar, we can derive the arithmetic expression 3 + 4 * 5 as
follows:

(Two different leftmost derivation exists for the desired construct. This will
be discussed in details in the ambiguity section. For now, we are showing one
of the methods here.)

〈expression〉 → 〈expression〉 * 〈expression〉
→ 〈expression〉 + 〈expression〉 * 〈expression〉
→ 〈number〉 + 〈expression〉 * 〈expression〉
→ 〈digit〉 + 〈expression〉 * 〈expression〉
→ 3 + 〈expression〉 * 〈expression〉
→ 3 + 〈number〉 * 〈expression〉
→ 3 + 〈digit〉 * 〈expression〉
→ 3 + 4 * 〈expression〉
→ 3 + 4 * 〈number〉
→ 3 + 4 * 〈digit〉
→ 3 + 4 * 5

5

SLecture 4 CSE425

If we don’t use leftmost derivation and derive the arithmetic operation in
the following way, it will also produce the exact same parse tree:

〈expression〉 → 〈expression〉 * 〈expression〉
→ 〈expression〉 + 〈expression〉 * 〈expression〉
→ 〈number〉 + 〈expression〉 * 〈expression〉
→ 〈number〉 + 〈number〉 * 〈expression〉
→ 〈number〉 + 〈number〉 * 〈number〉
→ 〈digit〉 + 〈number〉 * 〈number〉
→ 〈digit〉 + 〈digit〉 * 〈number〉
→ 〈digit〉 + 〈digit〉 * 〈digit〉
→ 3 + 〈digit〉 * 〈digit〉
→ 3 + 4 * 〈digit〉
→ 3 + 4 * 5

The parse tree will look like this:

Figure 4: Parse tree for an arithmetic expression

6

SLecture 4 CSE425

2 Abstract Syntax Tree (AST)

Abstract syntax tree (AST) also known as syntax tree or context syntax tree is
an abstract syntactic structure of a code written in a programming language.
A condensed parse tree is also considered as an abstract syntax tree.

Differences between parse tree and abstract syntax tree are as follows:

Parse Tree Abstract Syntax Tree

An ordered, rooted tree that rep-
resents the syntactic structure of a
string according to some context-
free grammar.

Abstract syntax tree is an abstract
syntactic structure of a code written
in a programming language.

Interior nodes represent grammar
rules and leaf nodes represents ter-
minals.

Interior nodes represent operations
and leaf nodes represent operands.

Characteristic information from the
real syntax are provided.

Does not provide characteristic in-
formation.

Syntax trees are comparatively
denser than parse trees.

Parse trees are comparatively less
dense than syntax trees.

To build an abstract syntax tree, let us consider the previous arithmetic opera-
tion (3 + 4 * 5) again. If we collapse the production chains of the fig 4, the AST
will be built. The final form of the AST is as the following figure:

Figure 5: AST for an arithmetic expression

7

SLecture 4 CSE425

Let us now consider the following pseudo-code snippet:

if
(

number 〉5
)

returntrue;
else

return f alse;

The Abstract Syntax tree of this code snippet would look like the following
figure:

Figure 6: AST for a programming language syntax

8

SLecture 4 CSE425

3 Ambiguity

In programming languages ambiguity arises when a string in a context-free
grammar definition has more than one leftmost derivation or parse tree. So, an
unambiguous grammar would be when a string has only one unique deriva-
tion or parse tree.

The reference grammar often can be ambiguous. If an ambiguous grammar
exists it is generally resolved by adding new rules like: precedence rules and
context-sensitive parsing rules.

Let’s look at an example of an ambiguous grammar:

Our rule is defined as:

X → X + X | X - X | y

We are going to derive y + y + y using this rule.

X → X + X
→ y + X
→ y + X + X
→ y + y + X
→ y + y + y

X → X + X
→ X + X + X
→ y + X + X
→ y + y + X
→ y + y + y

As we can see we have generated two unique derivations for the same
string, we can say that this grammar rule is ambiguous.

We can use left most derivation as a flag to check if a grammar rule is am-
biguous or not. If we find any grammar rule for which one token has more
than one possible replacement in a leftmost derivation, then we can conclude
that the grammar rule is ambiguous.

An ambiguous grammar rule can be fixed to be unambiguous by introduc-
ing new rules: Precedence and Associativity.

9

SLecture 4 CSE425

4 Precedence

In a programming language operator precedence is a set of rules that defines
the order of evaluation of various operators. For example, in most of the lan-
guages (and in mathematical notation) the multiplication operator takes prece-
dence over the addition operator.

So, 2+3*4 evaluates to 14 and not 20.

Why does it evaluate to 14?

Since the multiplication has a higher precedence, (3*4) gets evaluated first, so
the result is 2+12=14. Setting up precedence can be a good way to remove am-
biguity in a Parse tree. These rules help to keep the statements concise while
removing ambiguity. Without precedence rules even a simple statement like
4*5 + 4*5*5 + 6 would have to be written as ((4*5) + ((4*5)*5)) + 6. One would
agree that this is unnecessarily redundant.

In the context of a Parse Tree or AST, it is important that we maintain the
precedence, so that the compiler can figure out what to evaluate first. For ex-
ample, if X happens before Y, then we need to put X lower in the tree than Y.
Let’s take a look at the two possible AST of the expression 3 * 5 + 4.

Figure 7: Two possible AST for a mathematical expression

Intuitively the left tree is giving precedence to the ‘+’ symbol so that the ex-
pression will get evaluated as (3 * 5) + 4, while the right tree will evaluate it as
3 * (5 + 4). Not to argue that most people would prefer to give precedence to
the multiplication.

10

SLecture 4 CSE425

The parse tree of this expression with multiplicative precedence will look like
this:

Figure 8: Two possible AST for a mathematical expression

Now one may be left wondering on how to define grammar with precedence
in act. Here is an example of an unambiguous grammar that gives precedence
to multiplication operator.

expression → expression + term | term
term → term * factor | factor
factor → (expression) | number
number → number digit | digit
digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

From this set of grammar, the multiplication will get defactored later than
the addition.

11

SLecture 4 CSE425

5 Associativity

Associativity is a set of rules that helps to remove ambiguity in the case of
same precedence operators grouped together when there are no parentheses.

For example, in the expression 1 + 2 + 3 there are two ‘+’ signs. Since both
of these two operators have the same precedence it can lead us to two possible
AST.

Or in other words the expression can be evaluated either as 1 + (2+3) or (1+2)
+ 3.

To remove this ambiguity we have to define which of the two ‘+’ should go
lower in the tree. To do this the concept of operator associativity comes to
light.

According to associativity operators can be either left associative or right asso-
ciative. If an operator is left associative then the left most operator get evalu-
ated first.

That is 1 + 2 + 3 + 4 will be evaluated as (((1 + 2) + 3) + 4)

Associativity is bound in the grammar of the programming language. For ex-
ample to signify left associativity for addition we would define a left-recursive
grammar:

expression → expression + term | term

Similarly, for right associativity we would use a right-recursive grammar:

expression → term ˆ expression | term

12

SLecture 4 CSE425

The mathematical expression 1 + 2 + 3 should follow left associativity, such
that it may evaluate as 1 + (2+3). On the other hand the expression 2ˆ2ˆ3 (ˆ
symbolizes power) needs to follow right associativity.

13

SLecture 4 CSE425

6 Reference

1. https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/
Parsing

2. https://en.wikipedia.org/wiki/Yacc
3. https://en.wikipedia.org/wiki/Lex_(software)
4. https://en.wikipedia.org/wiki/Parse_tree
5. https://www.gatevidyalay.com/syntax-trees
6. https://en.wikipedia.org/wiki/Ambiguous_grammar
7. https://en.wikipedia.org/wiki/Operator_associativity
9. https://en.wikipedia.org/wiki/Order_of_operations

14

https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Parsing
https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Parsing
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Lex_(software)
https://en.wikipedia.org/wiki/Parse_tree
https://www.gatevidyalay.com/syntax-trees
https://en.wikipedia.org/wiki/Ambiguous_grammar
https://en.wikipedia.org/wiki/Operator_associativity
https://en.wikipedia.org/wiki/Order_of_operations

	Parse Tree
	Abstract Syntax Tree (AST)
	Ambiguity
	Precedence
	Associativity
	Reference

