

1 | P a g e

CSE 425: Concepts of Programming Languages

SLecture

Imperative Programming

Group: ioradiX

Md Abir ---------------------------- 1621775042

Mostak khan khadem ----------- 1621777042

 Nasir Ahmad ----------------------- 1612658642

2 | P a g e

Contents Page

Introduction 3-4

Data Types in Imperative

5-7

Advantages & Disadvantages 8-9

Design of String 9-10

Pointer 11-12

Array of Pointer 13-14

Reference

15

3 | P a g e

Introduction

Imperative programming is a paradigm of computer programming in which the program describes a

sequence of steps that change the state of the computer. Unlike declarative programming, which

describes "what" a program should accomplish.

History of Imperative Languages :

• First imperative languages: assembly languages

• 1954-1955: Fortran (FormulaTranslator)

John Backus developed for IBM 704

• Late 1950’s: Algol (Algorithmic Language)

• 1958: Cobol (Common Business Oriented Language) Developed by a government committee;

Grace Hopper very influential.

Imperative programming is divided into three broad categories:

 Procedural

 Object Oriented Programming(OOP)

 Parallel processing.

Procedural programming paradigm

This paradigm emphasizes on procedure in terms of under lying machine model. There is no difference

in between procedural and imperative approach. It has the ability to reuse the code and it was boon at

that time when it was in use because of its reusability.

Examples of Procedural programming paradigm:

Language Developed By

C Dennis Ritchie and Ken Thompson

C++ BjarneStroustrup

Java James Gosling at Sun Microsystems

Pascal Niklaus Wirth

4 | P a g e

Object oriented programming

The program is written as a collection of classes and object which are meant for communication. The

smallest and basic entity is object and all kind of computation is performed on the objects only. More

emphasis is on data rather procedure. It can handle almost all kind of real life problems which are today

in scenario.

Language Developed By

Visual Basic .NET developed by Microsoft

Ruby Yukihiro Matsumoto

Python Guido Van Rossum

Parallel processing approach

Parallel processing is the processing of program instructions by dividing them among multiple

processors. A parallel processing system possess many numbers of processor with the objective of

running a program in less time by dividing them. This approach seems to be like divide and conquer.

Examples are NESL (one of the oldest one) and C/C++ also supports because of some library function.

Imperativelanguages are Turing complete if they support integers, basic arithmetic operators,

assignment, sequencing, looping and branching.

Modernimperative languages generally also include features such as

– Expressions and assignment

– Control structures (loops, decisions)

– I/O commands

– Procedures and functions

– Error and exception handling

– Library support for data structures

5 | P a g e

Data Types in Imperative

In computer science and computer programming, a data type or simply type is an attribute of data

which tells the compiler or interpreter how the programmer intends to use the data. FORTRAN (John

Backus 1954) was a compiled language that allowed named variables, complex expressions,

subprograms, and many other features now common in imperative languages. Basically data types in

imperative programming language depends on the language itself. Generally, there are two types of

data type :

Primitive Data Type:

Primitive data types are predefined types of data, which are supported by the programming language.

Programmers can use these data types when creating variables in their programs.

Non Primitive Data Type:

Non-primitive data types are not defined by the programming language, but are instead created by the

programmer. They are sometimes called "reference variables," or "object references," since they

reference a memory location, which stores the data.

An example for Data Types in C

6 | P a g e

An example for Data Types in C ++

An example for Data Types in Ada

7 | P a g e

An example for Data Types in Java

A

n

exam

ple

for

Data

Types

in

pytho

n

8 | P a g e

Advantages & Disadvantages of Imperative Programming Language

Language Advantages Disadvantages

C
(was originally designed for and
implemented on the UNIX
operating system on the DEC
PDP-11, by Dennis Ritchie)

 Relatively small
language

 Can generate very
efficient code

 Runs on virtually all
platforms

 Lacks of Exception
Handling

 C does not have the
concept of OOPs

 Low level of abstraction

C++
(The language was designed
with the intent of merging the
efficiency and conciseness of C
with the object-oriented
programming features of
SIMULA-67)

 It is a multi-paradigm
programming language
:logic, structure

 Gives the programmer
the provision of total
control over memory
management

 Use of Pointers

 C++ does not support
any built-in threads.

 Lacks the feature of a
garbage collector to
automatically filter out
unnecessary data.

 Security issues exist due
to the availability of
friend functions, global
variables and, pointers.

Perl
(was originally developed by
Larry Wall in 1987 as a general-
purpose Unix scripting
language)

 Originally designed for
text processing

 Supports several
paradigms: imperative,
object-oriented,
functional

 Used for Web
applications, graphics
processing

 It is an interpreted
language

 It is too slow for large
programing

 The syntax of perl is non
interval

Java
(an object-oriented
programming language
developed by James Gosling and
colleagues at Sun Microsystems
in the early 1990s)

 Multithread supported

 Platform-Independent

 Supports Object-
Oriented

 Java is memory-
consuming and
significantly slower than
natively compiled
languages such as C or
C++

 Single-Paradigm
Language

Pascal
(was originally developed in
1970 by Niklaus Wirth and is

 Incorporated a variety
of data types

 Possible to work with

 Comparatively slower

9 | P a g e

named after the famous French
mathematician Blaise Pascal)

complex data types

 General purpose
language

Fortran
(Originally developed by IBM[3]
in the 1950s for scientific and
engineering applications)

 Generates the fastest
native code

 Is highly optimized for
victimization

 Surprisingly readable
and easy to understand.

 Lack of inherent
parallelism

 Lack of dynamic storage

 Lack of numeric
portability

Phthon
Python is an interpreted, high-
level, general-purpose
programming language. Created
by Guido van Rossum and first
released in 1991.

 Supports Object-
Oriented

 Extensive support
Libraries

 Productivity

 significantly slower than
natively compiled
languages such as C or
C++

 Python has limitations
with database access

 Python is not a very
good language for
mobile development

String

In imperative programming language there are two criteria to design the string .The two most important

design issues that are specific to character string types are the following:

 • Should strings be simply a special kind of character array or a primitive type?

 • Should strings have static or dynamic length?

The design criteria basically language dependent like :

C/C++ :

Strings are not defined as a primitive type, string data is usually stored in arrays of single characters. C

and C++ use char arrays to store character strings. These languages provide a collection of string

operations through standard libraries.

JAVA :

In java strings are supported by the String class, whose values are constant strings, and the StringBuffer

class, whose values are changeable and are more like arrays of single characters. These values are

specified with methods of the StringBuffer class.

 C# and Ruby include string classes that are similar to those of Java.

10 | P a g e

PYTHON :

Python includes strings as a primitive type and has operations for substring reference, catenation,

indexing to access individual characters, as well as methods for searching and replacement. There is also

an operation for character membership in a string. So, even though Python’s strings are primitive types,

for character and substring references, they act very much like arrays of characters. However, Python

strings are immutable, similar to the String class objects of Java.

String Length Options

There are several design choices regarding the length of string values.

 Static :

The length is set when the string is created . Such a string is called a static length string.

Example :C#,Python,.NET,RUBY,

 Limited Dynamic :

Allow strings to have varying length up to a declared and fixed maximum set by the

variable’s definition.

Example : C,C++

 Dynamic length:

Allow strings to have varying length with no maximum limit.

Example : JavaScript, Perl,php

There are three approach of designing string :

Approach 1:

Strings can be stored as linked-list, when strings grows the new cell come from the heap and linked with

the existing list. Here is one problem with that approach there need extra storage

Approach 2:

Use array of pointers and the problem with that approach is it requires extra storage but faster

processing

Approach 3:

Typically this one is used to store complete string in a new adjacent cell and remove / deallocate the old

version of the string . it is faster approach and efficient memory management

11 | P a g e

Pointers

In computer science, a pointer is a programming language object that stores the memory address of

another value located in computer memory. A pointer references a location in memory, and obtaining

the value stored at that location is known as dereferencing the pointer.

The general form of a pointer variable declaration is –

type *var-name;

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */

Why would we want to use pointers?

 To call a function by reference so that the data passed to the function can be changed inside the
function.

 To create a dynamic data structure which can grow larger or smaller as necessary.

12 | P a g e

Parameter Passing by Pointer

#include <stdio.h>

void swap(int a, int b)int main(void)

{ {

int temp;int x= 5, y= 10;

temp = a;printf("Before swap function: x = %d, y = %d\n",x,y);

a = b; swap(x,y);

 b = temp;printf("After swap function: x = %d, y = %d",x,y);

} }

Output:

Before swap function: x = 5, y = 10

After swap function: x = 10, y = 5

13 | P a g e

Array of ponters

In computer programming, an array of pointers is an indexed set of variables in which the variables are

pointers (a reference to a location in memory).

An example

#include <stdio.h>

constint ARRAY_SIZE = 5;

int main ()

{

 /* first, declare and set an array of five integers: */

intarray_of_integers[] = {5, 10, 20, 40, 80};

/* next, declare an array of five pointers-to-integers: */

inti, *array_of_pointers[ARRAY_SIZE];

for (i = 0; i< ARRAY_SIZE; i++)

 {

 /* for indices 1 through 5, set a pointer to

point to a corresponding integer: */

array_of_pointers[i] = &array_of_integers[i]; Output

 }

array_of_integers[0] = 5

for (i = 0; i< ARRAY_SIZE; i++)array_of_integers[1] = 10

 {array_of_integers[2] = 20

 /* print the values of the integers pointed to array_of_integers[3] = 40

by the pointers: */

printf("array_of_integers[%d] = %d\n", i, *array_of_pointers[i]);

 }

return 0;

14 | P a g e

}

Or

char *sports[] = {

"golf",

"hockey",

"football",

"cricket",

"shooting"

 };

It is important to note that each element of the sports array is a string literal and since a string literal
points to the base address of the first character, the base type of each element of the sports array is a
pointer to char or (char*).

The 0th element i.earr[0] points to the base address of string "golf". Similarly, the 1st element i.earr[1]
points to the base address of string "hockey" and so on.

Here is how an array of pointers to string is stored in memory.

15 | P a g e

Reference

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html

https://www.javatpoint.com/data-types-in-c

https://www.sarthaks.com/131871/classify-the-python-data-types

https://www.computerhope.com/jargon/a/array-of-pointers.htm

https://overiq.com/c-programming-101/array-of-pointers-to-strings-in-c/

https://en.wikipedia.org/wiki/Wiki

https://www.tutorialspoint.com/index.htm

https://www.startertutorials.com/ppl/books/sebesta.pdf

https://www.computerhope.com/jargon/a/array-of-pointers.htm
https://overiq.com/c-programming-101/array-of-pointers-to-strings-in-c/
https://en.wikipedia.org/wiki/Wiki
https://www.tutorialspoint.com/index.htm

