
Finite State Machine

Name: Md. Rafat Rahman Tushar
ID: 1621450042
Course: CSE 425
Sec: 03
Faculty: Md. Shahriar Karim (MSK1)

Group Name: ‘INFINITY’

Finite State Machine (FSM):
The term finite state machine (FSM) is also known as finite state automation. FSM is a calculation

model that can be executed with the help of hardware otherwise software. This is used for creating

sequential logic as well as a few computer programs. FSMs are used to solve the problems in fields

like mathematics, games, linguistics, and artificial intelligence. In a system where specific inputs

can cause specific changes in state that can be signified with the help of FSMs.

In this paper we will be focusing only on Deterministic Finite Automata (DFA).

Definition: A deterministic finite automaton (DFA) consists of

 A finite set of states (Often denoted as S)

 A finite set of symbols (alphabets, I)

 Transition function that takes as argument a state and a symbol and returns a state (often

denoted by δ or f)

 A start state often denoted s0

 a set of final or accepting states (often denoted F)

We have �� ∈ � and F ⸦ S.

So, DFA mathematically represented as 5 tuples (S, I, f, s0, F).

The transition function, f is a function in � × � → �. � × � is a set of two tuples (s, i) with � ∈ � and

� ∈ �.

Remember that, only the strings that reach to the final states are allowed and accepted, all other

are rejected. So, we can easily define a FDA with specified requirements of string.

DFA with transition table:

 0 1

→ q0 q2 q0

*q1 q1 q1

q2 q2 q1

The → indicates start state: here q0

The * indicates final state: here q1

This defines the following transition diagram,

Let it be clear with some simple examples.

Example:

Design a DFA that accepts set of all strings that start with ‘0’ with alphabets (0, 1).

Solution: Set of all strings that start with ‘0’ are, L= {0, 00, 01, 000, 001, 010, 011, 0000, …….}

For a string from L (001) we can justify the answer. For 001, at first, start from the start state A.

Then follow the alphabet’0’ which leads to the state B (string: 0). Then follow the alphabet ‘0’ in

B, which leads to the state B again (string: 00). Then follow the alphabet ‘1’ which again leads to

the final state B (string: 001). Since we get the deserved string (001) and since B is the final state,

we can conclude our findings with � → � → �.

Here,

S = {A, B, C}

I = {0, 1}

f : S × I → S

s0 = Start State ≡ A

F: {B}

Also, here C is the dead state or trap state, since it cannot go to the final state B.

Example:

For an alphabet set, I = {x, y}, draw DFA that recognize the language formed by all strings of 2n

(where n = 0, 1, 2, 3, 4.….) numbers of x’s. Take an example string from the aforementioned

language and recognize it using the DFA you design.

Solution: Set of all strings with given requirements are, L= {Φ, xx, xxxx, xxxxxx……..}

Here,

S = {A, B, C}

I = {x, y}

f : S × I → S

s0 = Start State ≡ A

F: {A}

Also, here C is the dead state or trap state, since it cannot go to the final state B.

From a string from L (xxxx), we can justify the answer. First, start from the starting state A. Then

go to the B followed by alphabet x. Then go to the state A followed by alphabet x. Again, go to

the state B followed by alphabet x, and then go to string A followed by alphabet x. A is also the

finale state.

So the states are � → � → � → � → �.

