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1 Introduction

Artificial intelligence (AI) has made machines more capable than ever before and has un-
locked great opportunities for humans. However, present AI algorithms are computationally
expensive, limiting their use in many situations where it is not possible to have relatively
large and powerful hardware. Interestingly, the human brain is able to make large computa-
tions while consuming lesser energy using the neural networks and other associated feedback
and memory mechanisms. AI algorithms are mathematics based and seldom employ any
bio-chemical aspects to boost efficiency and reduce computation costs. Hence, our goal is to
explore the mechanisms that are derived from the neural networks of the human brain and
tune them to operate in a similar fashion as the brain in terms of efficiency. The objective is
to be able to install these mechanisms in minuscule devices ( nano-bots could be an example)
that are programmable and can, thereby, be used to traverse the human body leading to the
possible analysis and cure of numerous diseases such as cancer. In order to do so, however,
the human brain has to be understood first and is considered in the following sections in
greater detail.

2 The Neuron

The diagram above shows a single neuron. A neuron consists of numerous dendrites that
branch of to link to other neurons. It is at the dendrites that a neuron receives information
in the form of an electric pulse from the input through organs. The end of each dendrite
is known as the synapse and it is this region which connects neurons, through the receipt
and release of neurotransmitters. The synapse that release neurotransmitters are known
as the pre-synapse and the synapse that receives them are known as post-synapses. The
neurotransmitters cause the dendrites to receive an electric pulse and these can be either
excitatory or inhibitory depending on the type of neurotransmitters received. Pulses from
each dendrite is, then, sent to the soma, or the neuron body, for processing. The accumu-
lation of the pulses after being processed moves down the axon to be sent to a following
neuron. The axon is insulated by myelin sheath with periodic gaps along the length of
the axon known as the nodes of Ranvier. The purpose of the myelin sheath and nodes of
Ranvier are to ensure fast and smooth transmission of electric pulse along the axon. These
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Figure 1: An overview of a neuron.

mentioned parts of the neuron and their roles are guided by chemical changes which are
discussed in the following section.

2.1 Underlying Chemical Interaction within the
Neuron

The environment around the cell or neuron is ionized and has a higher concentration of
Na+ ions than inside the neuron.K+ ions are greater in quantity inside the cell compared
to the outside. And when neurotransmitters are received at the post-synapse, ion channels
are opened up at the synapse causing an influx of the Na+ ion, setting up a concentration
gradient.

2.1.1 The Resting Potential

The resting potential of the neuron is −70mV and this is maintained by leakage of K+

ions out of the cell by leakage channels in the cell membrane. However, only K+ ions are
permeable through these channels and so Na+ ions are pumped inwards through active
transport. This maintains an a constant ionic concentration gradient and since there is more
positive potential outside the neuron than inside,−70mV is the resting potential across the
membrane. The leakage does not significantly influence the passage of the electric pulse
when the neuron fires.

2.1.2 The Action Potential

Once the concentration gradient is set up andNa+ ions enter the neuron at the synapses, they
start to diffuse within the neuron since the concentration of Na+ ions are less in the other
regions. In these regions, the potential becomes less negative as the difference in positive
charge from outside the cell decreases. Consequently, the potential rises to −55mV and
results in voltage-gated Na+ channels to open up which let allow more Na+ ions to move into
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the neuron, diffuse further across the neuron and open more ion channels. Such a diffusion of
the ions in known as electrotonic motion. This mechanism is followed throughout the entire
neuron to conduct the electric pulse. Along the axon, the ion channels are present at the
nodes of Ranvier to let more ions diffuse in the neuron, while the zones covered by the myelin
sheath contribute mostly to conduction by preventing the Na+ ions from losing too much
energy as they flow. As Na+ ions increase, the potential across the cell membrane becomes
less negative and moves towards positive, eventually reaching a maximum of +30mV . This
maximum potential is the action potential of the neuron and is achieved when the neuron fires
for any specific input. The increase in potential is known as the process of depolarisation.

At +30mV , the ion channels for Na+ ions close while the ones for K+ open up. Since
there are more K+ ions within the neuron, as mentioned earlier, another concentration
gradient is set up, with K+ ions diffusing out of the neuron and decreasing the positive
potential again until there is more positive charge outside the neuron compared to the inside;
a negative potential below −70mV , about −80mV is reached. The decrease of potential
across the cell membrane is called repolarisation. Then, the leakage and active transport
of the mentioned ions in section 2.1.1 takes place to reestablish the resting potential. The
state during which the resting potential is regained is known as hyperpolarisation.

Figure 2: The time period for the entire process of (a)depolarisation, (b)repolarisation and
(c)hyperpolarisation takes only about 5ms.

3 Deeper Analysis of the Synapse

In order to increase the efficiency of any artificial neural network, the specific interactions
that occur at the synapse need to analyzed at a greater depth. The chemical dynamics at
this neural junction involves the release, receipt and re-uptake of neurotransmitters and
the more accurately these processes can be re-created in an artificial network system, the
greater the efficiency will be.
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3.1 Neurotransmitters

The gap between the pre-synapse and the post-synapse is called the synaptic cleft. At the
pre-synaptic terminal, the action potential causes voltage-gated ion channels to open up,
but causing an influx of Ca+ ions into the pre-synaptic terminal. Neurotransmitters are
stored in vesicles, which are membranes that isolate the chemicals, preventing any sort of
reactions. The Ca+ ions release synaptotagmin, which basically dissolves the vesicles with
the cell membrane causing the neurotransmitters to flow in the synaptic cleft. From the
cleft, the neurotransmitters bind to receptors present at the post synaptic completing the
transmission of information.

Figure 3: The Synaptic Cleft.
Image source: www.simplypsychology.org

All neurotransmitters are synthesized from proteins and each type of neurotransmitter
can only cause excitation or inhibition at the post-synapse. For instance, Glutamate, causes
an excitatory effect and promotes electrotonic spread of Na+ ions. GABA, on the other
hand is an inhibitory neurotransmitter, and allows for a very small number of Na+ ions to
enter and does not add to the electrotonic spread of ions that simultaneously takes place
from other excited synapses. The different neurotransmitters are responsible for the memory
of humans - both long-term and short-term. The implementation of learning depends on the
storage and access of past inputs and corresponding outcomes and hence, requires the use
of neurotransmitters[2].

3.2 Neurotransmitters and Learning

Based on the neurotransmitters in action, memory is categorized as follows:

• The Immediate Memory

• The Working Memory

• The Verbal Memory

• The Visual Memory

The following sections provide further details about the different memories
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3.3 The Immediate Memory

Also known as the short term memory, this is where instant processing data are held. An
analogy of Random Access Memory(RAM) of a computer can be used to signify the task
of the short term memory. Upon the reception of an input pulse, the output pulse of each
neuron in the series of neurons operating for that specific input, is, in a way, stored to
determine which neuron to fire next. This is the first part of learning in the sense that the
immediate memory helps in predicting the specific path of neurons to pass a certain input
to. The release of Glutamate (which is excitatory in nature) allows for this functionality.

3.4 The Working Memory

The working memory functions from the secretion of Dopamine, which is a type of in-
hibitory neurotransmitter. When a path for a specific input is stored at the immediate
memory, within 30ms it is sent to the working memory. The advantage is that this infor-
mation is now accessible from the working memory and so can be used by the immediate
memory to invoke reactions based on similar but not necessarily the same input. Therefore,
a layer of versatility is added due to the inter-dependent operation of the memories.

Moreover, this memory is responsible for longer term processes like muscle memory and
so increase the biological neural network’s efficiency since there is no need to assess muscle
actions every time by sequential neuron fires. Rather it kind of provides a shortcut to
certain actions or motor outputs. The neurotransmitter Acetylecholine is responsible for
this specific role of the working memory.

3.5 The Verbal and Visual Memory

GABA and Serotonin are two types of inhibitory neurotransmitters that allow for the
recognition of shapes, object and scenarios that are seen, making the visual memory. And
the verbal memory, also caused by the same neurotransmitters, enable people to resemble
sounds heard, sentences and words said. This memory can be considered a subset of the
working memory since the eventual use the visual and audible interactions are sent to the
working memory for being processed, recognized and result in the desired reaction.

4 Memory

The different classifications of memory, as described earlier, require further analysis in order
to simulate the idea of learning and intelligence in an artificially designed neural model.
To do so, memory formation and functioning is looked at greater detail in the following
segments.

4.1 Memory Formation

The continuous activation of a specific network of neurons forms memory depending on the
strength of the relation between the neurons. The said strength refers to the frequency
at which neurons in the specific network is fired - and this phenomenon is called synaptic
plasticity. For instance, considering two connected neurons and for a certain input the
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former neuron in the network causes the latter one to fire for each time the same input
is received. And with each fire, the connection between these two neurons get stronger,
becoming, initially, part of the working memory and later (if the strong relation remains)
part of the long-term memory.

4.2 Chemical Dynamics that Create Memory

Memory sets the foundation to learning and leads to the presence of intelligence. The inter-
neuronal connection strength that results in memory is caused, like all other neural activities,
by chemical interactions - the volume of neurotransmitter being released into the synapse(1)
and the number of ions channels that allow for the entrance of Na+ and Ca2+(Calcium ions)
into the post-synaptic terminal through the dendrite branches(2). The following diagram
shows this in action:

Figure 4: Synaptic plasticity changes either due to increase in neurotransmitter or inlet
channels of the Na+ ions and Ca2+ions or both.
Image source: Queensland Brain Institute

5 Chemical interactions contributing to synaptic dy-

namics

Post Synapses are not only one dimensional terminals with receptors on their surface, rather
these can be modelled according to the Singer-Nicholson model of the fluid mosaic mem-
brane. This suggests that the membrane follows a two-dimensional orientation solution of
integral proteins embedded in a viscous phospholipid bilayer. Following this model, there
are numerous sub domains of protein complexes at the post-synaptic membrane. This region
that acts as a membrane, below the surface is known as the post-synaptic density(PSD)[3].

5.1 Recycling of neurotransmitters and receptors

Proteins from the PSD are responsible for the exocytosis and endocytosis of receptors present
at the post-synapse surface. However the rate of degradation and production of the receptors
depend on other stimuli[3] that are discussed shortly. For the neurotransmitters that are
re-released from the receptors, glial cells present adjacent to the post-synapses - sometimes
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Figure 5: The inner layer of post-synaptic membrane houses numerous protein complexes as
shown in the diagram. The entire sub-surface membrane is the postsynaptic density(PSD).
Image source: [3].

almost overlapping them - let out other proteins that act as sort of carriers, taking them
through the glial cells called astrocytes and re-inserting them into the vesicles at the pre-
synapse. In addition to contributing for the re-uptake of neurotransmitters, astrocytes also
release calcium ions Ca2+ that play a crucial role in long-term potentiation[4].

Figure 6: Astrocytes allow for the re-uptake of the neurotransmitters while allowing for
electro-chemical equilibrium by influencing the concentration of Ca2+ions. The ATP are
the carrier proteins that transport the neurotransmitters to the astrocytes.
Image source: [4].

5.2 AMPA and NMDA receptors

From a general point of view, the activity mentioned at the beginning of section 5 refers to
the fact that for identical inputs, the same sequence of pre-synapses and post-synapses are
used and this usage causes the connection of this path to strengthen every time the input
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is received by the brain. The strengthening occurs in the form of increase in the number
of receptor channels at the post-synapse. Therefore, to put it in simpler terms, plasticity
increases with increase in the strength of a neural pathway and this occurs through increase
in neurotransmitter receptors.

AMPA is the type of receptor that purely allows the enter of Na+ ions in the synapse.
NMDA receptors do not open up solely due to the binding of a neurotransmitter, the channel
is blocked by a magnesium ion (Mg2+), which moves outwards when a potential difference
is set up by the influx of Na+ ions through AMPA receptors. Both Ca2+ ions (released from
astrocytes mentioned in 5.1) and Na+ ions enter the post-synapse. The Ca2+ ions stimulate
the post-synapse and PSD to create more receptors through exocytosis[9] and neurotrans-
mitters have been observed to show greater affinity towards post-synaptic branches that have
the highest number of receptors.

Figure 7: Inter-dependency between AMPA and NMDA receptors.

6 Synaptic plasticity and its role in artificial neural

networks

The ability of the human brain to learn through experience occurs via the phenomenon of
long term potentiation and to achieve this, the synaptic cleft between neurons have to be
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analyzed. Neuronal communication takes place through chemical interactions at the synaptic
cleft, and the behavioural traits of the post-synapse and the pre-synapse changes depending
on activity between these two terminals[6]. Therefore, synapses are dynamic in nature and
the pattern of their behaviour is discussed as follows: The release of neurotransmitters are
due to the firing of a neuron and these neurotransmitters bind to receptors of a post-synapse
across the synaptic cleft. However, there are numerous post-synaptic branches that have the
receptors for the specific neurotransmitters released.The determination of the specific post-
synaptic branch is based on activity of the neuron, that is, the neurotransmitters choose to
bind to the post-synaptic branch that had been previously bounded with for the same input.
This specific path that is followed for identical inputs creates what is known as synaptic
plasticity.

7 Artificial Neural Networks

Now that the functionality and inter-connectivity of biological neurons have been discussed
at reasonable depth, the task at hand is to look at how the biological aspects have been
implemented to re-create the computational power and intelligence of the human brain.

The first-ever attempt in this regard was by neuroscientist Warren McCulloch and logician
Walter Pitts in 1943. They produced a mathematical model that mimics the information
(electric pulse) processing and transmission within a neuron. The following diagram shows
a McCulloch-Pitts neuron:

Figure 8: Structure of the McCulloch-Pitts neuron.

The inputs to this neuron are binary, i.e. 0 or 1. Inside the neuron body are two
functions that are responsible for processing the inputs, the function g causing aggregation or
summation of the inputs and the function f is the threshold function that determines whether
the aggregated input passes a given threshold. If the threshold is reached or exceeded, the
neuron fire is re-created and the output is 1, otherwise, the output is 0. A simplified example
is as follows: the neuron will be used to identify the picture of a dog, the inputs represent
the following statements:

• x1 - is it an animal

• x2 - does it bite

• x3 - can it be trained
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If x1 is 0 then the output is 0 by default.Such a deterministic input as x1 represents an
inhibitory input. On the other hand, x2 can be 1 or 0 but it will not determine the outcome,
rather the other inputs have to be considered and finally the threshold has to be checked.
Such an input is considered excitatory. In the case that all the three inputs are 1, then the
output is also 1.

However, this was just a standard mathematical representation of the neuron and in
reality there are so much more factors to be considered to generate an evaluation based
on the input. So, the Perceptron was designed to take a step closer in developing a more
realistic model of the neuron.

7.1 The Perceptron

[10] First proposed by American psychologist Frank Rosenblatt in 1958, the perceptron uses
a retinal framework to receive inputs from its surrounding and has functions within its
body( based on the McCulloch-Pitts neuron) which allow for an output to be evaluated.
The following diagram shows the perceptron model:

Figure 9: The organization of the perceptron.
Image source: [10].

The most significant upgrade in the perceptron model is the fact that each input has a
weight assigned to it and the input can be refined using layers of these artificial neurons with
varying weights in successive processes. These weights allow to distinguish which specific
input has the greatest influence on the output to be evaluated. In this framework, the input
is also considered as binary and is multiplied to its weight. Therefore, the following function
is used for the first step of processing the input information:

n∑
i=0

wi ∗ xi ≦ θ

n is the number of inputs, w is the weight assigned, x is the input and θ is the threshold value
that allows for the neuron to fire. The lines linking the retina to the projection area (AI),
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in figure 6 are xi. In AI are multiple A-units which emulate the presence of the multiple
branched dendrites and every single input is received in an A-unit with different weights.
The A-units that reach the threshold pulse or value fire and send this signal to AII where
there are similar A-units, analogous to the pre-synapse region. The A-units that do not fire
at the AI area do not send further signal down to the AII region. The final aggregation
occurs at AII with the received values by each A-unit in this region and the output is either
1 or 0, denoted by R1 and R2 in figure 10.

Figure 10: The A-units in the projection area (AI) drop out the unlikely outputs and send
the most likely outputs to the A-units in the Association area(AII).
Image source: [10].

7.2 The Hodgkin-Huxley Model and Spiking Neural Network

As mentioned, the spiking neural network is associated with the action potential of a neuron.
The dynamics of changes in membrane potential over the course of information transmission
that causes a neuron to fire has been discussed in 2.1 and the Hodgkin-Huxley model math-
ematically incorporates the ionic interchanges that give rise to the flow of current as the
neuron fires. The diagrams below shows the representation of the Hodgkin-Huxley model:

Figure 11: The figure on the left is a schematic diagram of the ions and ion channels that
are responsible for current transfer.
The circuit diagram on the right shows the behaviour of the ion channels that allow for the
ionic exchange.
Image source: neuronaldynamics.epfl.ch
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The role of Na+, K+ ions and leakage channels have been discussed in section 2.1 and
extending on that theory, the permeability of the neuron membrane changes with change in
potential, thereby regulating the influx and efflux of Na+ ions and K+ ions respectively. In
the circuit, above, C is the membrane capacitance, R, RNa and RK denote the varying ability
of the leakage ions, Na+ ions and K+ ions respectively to flow across the cell membrane.
And since, each type of ion channel requires a specific potential to open, EL, ENa and EK

represent those voltages for the leakage channels, Na+ channels andK+ channels respectively
(found by experiments conducted by Sir Alan Hodgkin and Sir Andrew Huxley on a squid
giant axon). The total current, I, is input to the neuron and regulated using the resistors
such that it allows for the peak voltage to hit consecutively for each individual input of
I. The following graph shows the result: The behaviour of this graph can be described

Figure 12: The Spikes of action potential are consecutively hit when an artificial neural
network is controlled using the Hodgkin-Huxley model.

mathematically using a differential equation derived from the circuit in figure 11. C = q/u,
here, the capacitance, C, of the membrane equals to the charge, q, stored for the membrane
potential, u, per unit. Considering the current across the cell membrane is IC and it is
known that I = q/t or current equals charge per unit time. Therefore, substituting IC into
the equation of C gives: C = IC ∗ t/u, or IC = C ∗ u/t And since they flow of current
in the neuron is continuous when the neuron becomes activated or is about to fire, the
instantaneous current in the cell membrane as a function of time would be:

IC(t) = C
∂u

∂t

The currents for the ion channels and leakage channels are IL, IK , INa and the final form of
the equation is:

I(t) = IC(t) + I(t)L + I(t)K + I(t)Na
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⇒ I(t) = C
∂u

∂t
+
∑
k

Ik(t)

In the final equation, k is not the K+ ions rather it is a dummy variable. The use of this
equation helps to construct a more efficient artificial neural network as it only utilizes on
the firing part of neural activity and therefore, drops out instances or iterations that do not
cause the neuron to fire, hence, lowering the time taken to train the model[5].

8 Forming Artificial Networks

Combining the perceptron model with chemical aspects of neuronal activity as discussed
above, a type of neural network, known as a Biomolecular Neural Network(BNN)[7] can be
formed in the attempt to make the network more efficient in terms of its ability to determine
which specific combinations of computations it has to carry out for a specific input. The
expected outcome is the decrease in computational time and power and increase in accuracy
in the power of recognition for identical inputs due to the use of the concept of plasticity.
The following equations have been proposed as a result:

Figure 13: Simplified biological equations to map onto the biomolecular framework.
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8.1 Biological Regulators

The proposition provided above is, however, deficient of implementable aspects which should
make the system an efficient artificial network. For instance, the production of R is a noisy
process which is likely to affect the performance of the system. Furthermore, T has no
source and no regulation and hence, it is a matter of investigation to identify the most bio-
physically relevant method of introducing T in the system without hindering run time. To
solve such issues, regulatory molecules that govern the behaviour of T or neurotransmitters
are analyzed.

8.2 The AMPA-NMDA dependency

Using the concept in section 5.2, there is an up-regulation of the neurotransmitter receptors
or R due to the activation of NMDA receptors triggered from AMPA receptor and neuro-
transmitter binding. Furthermore, NMDA kinetics are much slower compared to AMPA and
other types of receptor kinetics [12] and so these receptors can be considered as a type of
regulatory co-agonists controlling the concentration flow of neurotransmitters in and out of
the pre-synapse and post-synapse respectively. Drawing inspiration from this knowledge, the
model in section 8 can is modified to the following diamond network.

Figure 14: A diamond shaped network demonstrating the interactions between AMPA and
NMDA receptors and neurotransmitters. A: AMPA receptor, N: NMDA receptor

Although the concept of these receptors is used from biology, the network design is
customised, targeted to be an optimised ANN. It is designed as a combinational network
with two double positive feedback loops between A and O and N and O; autoregulation
in A and O; feed-forward connection from T to A and N[1].The dynamics of this network
are explained as follows.

8.3 ANN version 2.0 [explained]

The open channel due to neurotransmitter-receptor binding is treated as the output molecule
of the system and as per this formation, the production of O up-regulates the production
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of A and N while both A and N, but not necessarily at the same time, leads to the
production of O.The feedback relation here is not linear; the production of N is dependent
on a threshold concentration of O which is produced from A. When the specific threshold
concentration is reached, N is takes part in the reaction and starts controlling the number
of O until reaching a steady state concentration.

Nevertheless, this control mechanism set up by the AMPA and NMDA receptors is also
dependent on many protein-based co-agonists in the PSD (section 5) and, surrounding
glial cells as well as others present in the pre-synapse. Hence, a different biological aspect is
considered in the following section.

9 Glycine in the Synaptic Cleft

Glycine is an amino acid that can enter the synaptic cleft from either the glial astrocytes
mentioned in section 5 or diffuse from extra-synaptic regions, which in layman’s terms,
is the outside region surrounding the synaptic cleft and the synaptic branches. To work
as a co-agonist, it also requires that D-serine, another amino acid, be present at the site
of binding. Working together, glycine and D-serine act as partial activators of the NMDA
receptor, thereby, controlling synaptic plasticity[8].

Figure 15: Gylcine enters the synaptic cleft from the astrocytes and regulates the binding
of neurotransmitters with receptors.
Image source: [11].

Hence, instead of considering NMDA and AMPA as individual regulators, the role of
Glycine and D-serine are taken into account and the following modification to our existing
model is made: T ⇒ N; A,N ⇒ R; O ⇒ NR; the role of Glycine and D-serine are
cumulatively accounted for and represented in our model as a custom molecule.
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