Code and Name | CSE 543 Introduction to Robotics |
Type | Elective |
Credit Hours | 3 |
Pre-requisites | None |
Coordinator | |
Course Objective & Outcome Form | Download |
Lab Manual | Download |
In addition to traditions rooted in mechanics and dynamics, geometrical reasoning, and artificial intelligence, the study of robot systems is growing to include many issues traditionally part of the computing sciences; distributed and adaptive control, architecture, software engineering, real-time systems, information processing and learning. In robotics, processing and its relationship to mechanical function are dependent on the target platform and the world in which it is situated. Designing an embedded computational system for sensory and motor processes requires that designers appreciate and understand all of these disciplines. This course is concerned with the design and analysis of adaptive, closed-loop physical systems. The focus will be sensory and motor systems that interpret and manipulate their environments. Toward this end, we will study mechanisms (kinematics and dynamics), actuators, sensors (with a focus on active vision), signal processing, associative memory, feedback control theory, supervised and unsupervised learning, and task planning. Interesting examples of integrated sensory, motor, and computational systems can be found in nature, so occasionally we will relate the subject matter to biological systems. Students will experiment with system identification and control, image processing, path planning, and learning on simulated platforms to reinforce the material presented in class.