Inference
Inference means reasoning to draw conclusion from a given set of information. For instance,
Man is Mortal.
Socrates is human.
Therefore,
Socrates will die.
A few rules
Modus Ponens:
\(\begin{array}{rl}
& p \\
& p \to q \\
\therefore & q
\end{array}\)
Modus Tollens
Hypothetical Syllogism
Simplification
Resolution
Conjunction
Disjunctive Syllogism
Example 1
Premises: It is not sunny this afternoon and it is colder than yesterday. We will go swimming only if it is sunny. If we
do not go swimming, then we will take a canoe trip. If we take a canoe trip, then we will be home by sunset.
Conclusion: We will be home by sunset.
Let's apply rules of inference to see if the conclusion can be reached.
\(\neg p \wedge q \;\;\;(Premise\;1)\)
\( r \rightarrow p \;\;\;(Premise\;2)\)
\( \neg r \rightarrow s \;\;\;(Premise\;3)\)
\( s \rightarrow t \;\;\;(Premise\;4)\)
\( \neg p \;\;\; (Simplification\;rule\;on\;1)\)
\( \neg r \;\;\; (Moduls\;Tollens\;between\;1\;and\;5)\)
\( s \;\;\; (Modus\;Ponens\;between\;3\;and\;6)\)
\( t \;\;\; (Modus\;Ponens\;between\;4\;and\;7)\)
Example 2
Premises: A student in this class has not read the book. Everyone in this class passed the
first exam. Therefore, someone who passed the first exam has not read the book.
Assuming All NSU students as the domain.
\(C(x)\): x is student in this class.
\(B(x)\): x has read the book.
\(P(x)\): x has passed the exam.
By applying rules of inference,
\(\exists x (C(x) \wedge \neg B(x))\)
\(\forall x (C(x) \rightarrow P(x))\)
\(C(a) \wedge \neg B(x)\;\;\;(Existential\;instantiation\; of\;1)\)
\(C(a) \;\;\;\;\; (Simplification\;of\;3)\)
\(C(a) \rightarrow P(a)\;\;\; (Universal\;instantiation\;of\;2)\)
\(P(a)\;\;\;(Modus\;Ponens\;of\;4\;and\;5)\)
\(\neg B(a)\;\;\;(Simplification\;of\;3)\)
\(P(a) \wedge \neg B(a) (Conjunction\;of\;6\;and\;7)\)
\(\exists x (P(a) \wedge \neg B(a)) (Existential\;generalization\;of\;8)\)
|